
Introduction to Statistical Ideas and Methods

Sampling Distributions
The Distribution of a Sample Mean: Part 1

Imagine that we observe the value of a random measurement and suppose the probability
distribution that describes the behaviour of the possible values of the measurement is a
normal distribution. Then, although the value of our measurement is a random quantity, we
know that it is more likely to be a value close to the mean, than from the tails of its normal
distribution.
Now, suppose we observe 10 random measurements where the probability distribution of
each measurement is normal. Then we take these measurements and average them together.
What values are we likely to see for this average? Compared to a single value, is it more
likely to be close to the mean of the normal distribution, or further from the mean?
In this document we explore how the probability distribution of an average of a number of
measurements compares to the probability distribution of a single measurement in the case
of the normal distribution.

Here is a Normal density function with a mean of 70 and a standard deviation of 10.
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Figure 1: Normal probability density: mean=70, SD=10

Suppose this is the probability distribution that describes the behaviour of a measurement
of some quantity. For example it can be the probability distribution of the marks on a
standardized exam.
Next we observe a randomly generated observation from this distribution:
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Figure 2: Randomly generated observation

It has value a little above 50. So this randomly chosen exam writer got a mark just over 50
on the exam. We can observe another random measurement from this distribution:
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Figure 3: Randomly generated observation

This writer got above the mean of 70.
According to this probability distribution, about 95% of writers will get an exam mark
between 50 and 90, with values closer to the mean more likely, and marks greater than 90
or less than 50 possible, but unlikely.

Now suppose we have 9 randomly chosen measurements following this probability distribu-
tion. Here is one random sample from all possible samples of 9 measurements:
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Figure 4: One random sample of 9 measurements

The measurements in our sample are distributed across the probability distribution, with
more values close to the distribution mean of 70, although by chance we got a few more
values below the mean than above the mean. Suppose we are interested in the average of
these 9 measurements. It is 65.5. We can call this average the sample mean, since it is a
mean, or average, from a sample of values from the probability distribution.
If we had another random sample of 9 measurements we would get a different 9 values, and
consequently a different average.
If we repeat this process 10 times and calculate the sample mean (of 9 measurements) each
time, we get the following random sample means: 65.5, 70.7, 66.4, 65.6, 73.1, 74.8, 74.3, 63.5,
66.8, 66.9. Although the individual observations cover the range of possible values from our
probability distribution (from 40 to 100), the sample means are always quite close to the
mean of the normal probability distribution.

To generalize this, we simulated 2000 random samples of size 9 (from normal distribution
with mean 70 and standard deviation of 10), found the average for each, and plotted the
2000 sample means in the following histogram:
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Figure 5: Density histogram of 2000 random sample means
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The y-axis has been scaled so that the total area under the histogram is 1, like a probability
density function.
There are 3 things to note about the values of the sample mean that we observe in this
histogram:

1. The most common values are close to the mean of the probability distribution of the
individual values (in our case 70).

2. The sample means range from about 60 to 80, with most of them between about 65
and 75. Compared to a range about 40 to 100 with most values between 50 and 90 for
our individual values. So there is less variability in the sample means than there is in
our individual values.

3. The histogram is symmetric, and bell-shaped, like a normal distribution.

We can smooth this histogram and get an estimate of the density function of the means:
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Figure 6: Left: Density histogram with smooth. Right: Estimated density curve

For a better comparison of the probability distribution of the individual measurements versus
the probability distribution of the sample means of random samples of size 9, we plot both
on the same scale:
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Figure 7: Density of individual measurement (blue) and density of sample means (purple)

Both probability distributions are normal, both normal distributions have the same mean,
but the purple probability density function has less spread. That is, the standard deviation of
the probability distribution of the sample means is smaller than the standard deviation of the
probability distribution of the individual observations. This is consistent with our intuition,
an average of several observations gives a better estimate than a single observation, where
accuracy is captured by the spread in the distribution of values it could be.

Let’s now introduce some notation.
As is usual for the normal distribution, we call the center of the distribution (or expected
value) the Greek letter ‘mu’ (µ) and we call the standard deviation the Greek letter ‘sigma’
(σ). µ and σ are properties of the probability distribution and they are fixed (not ran-
dom).

We call X1 a random variable that follows this distribution.
We had 9 observations of such a random variable in our samples, so we have X1, X2, , X9.
The notation for the sample mean (the average of these 9 observations) is X with a bar over
it:

X̄ =
X1 + · · ·+X9

9

Note that X̄ is a random quantity. It varies, randomly, with each random sample that we
might observe.

Previously it was shown that if we roll a die 100 times and calculate the average of those
100 rolls then:

E(X̄) = expected value of a single roll

V ar(X̄) =
variance of a single roll

100
We can take the square root of the variance to get the standard deviation:

SD(X̄) =
√
V ar(X̄) =

standard deviation of a single roll√
100
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So the average has the same mean as the probability distribution of a single measurement,
but the variance decreases by dividing it by the number of measurements in our random
sample.

Generally: for X1, , Xn independent random variables (n is the sample size) with

E(Xi) = µ, SD(Xi) = σ

and X̄ is the average of the n observations. Then

E(X̄) = µ, SD(X̄) =
σ√
n

Averages are often used to estimate the expected value (µ) of the underlying probability
distribution. The fact that E(X̄) equals to µ is a nice property of the X̄. It tell us that an
average is an unbiased estimator of the µ. So in the long run, with a large sample size, X̄
will give us a value very close to what we want to estimate.

Summary:

1. When measurements are random values that follow a normal distribution, the probabil-
ity distribution of sample means (the average of the data) is also a normal distribution.

2. The mean of the normal probability distribution of the sample means is the same as
the mean of the probability distribution of the individual measurements.

3. The standard deviation of the probability distribution of the sample means is smaller
than the standard deviation of the probability distribution of the individual observa-
tions.
If there are n values in the random sample and σ is the standard deviation of the
probability distribution of the individual observations, the standard deviation of the
probability distribution of the sample means is σ/

√
n.
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