Introduction to Statistical Ideas and Methods

Confidence Intervals

Confidence Intervals for Proportions

Imagine an experiment with two outcomes. Let p denote the unknown true probability of getting a successful outcome on any one trial. This probability is constant and does not change from experiment to experiment. If we repeat the experiment n times we can estimate p by $\hat{p}=$ total number of successes / total number of trials. For this type of situation we know the sampling distribution, the mean and the variance of \hat{p} are given by

$$
\begin{aligned}
& E(\hat{p})=p \\
& \operatorname{Var}(\hat{p})=\frac{p(1-p)}{n} \\
& \hat{p} \approx N\left(p, \frac{p(1-p)}{n}\right)
\end{aligned}
$$

Now we can do a little bit of algebraic manipulation. If we subtract from \hat{p} the mean and divide by the square root of the variance we get a quantity which has approximately a standard Normal distribution.

$$
\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \approx N(0,1)
$$

The standard Normal distribution is a useful and familiar distribution. We can graph it as shown in Figure ?? and we can determine the probabilities in different regions. For example, the area under the curve between -1.96 and 1.96 is equal to 95% of the total area. If a random variable follows a standard Normal distribution only 5% of the time will an observation be less than -1.96 or greater than 1.96.

Figure 1: Critical values for 95\% confidence interval

Now putting all these facts together

$$
\begin{aligned}
& P\left(\left|\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}\right|>1.96\right) \doteq 0.05=5 \% \\
& P\left(\left|\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}\right| \leq 1.96\right) \doteq 0.95=95 \% \\
& P\left(-1.96 \leq\left|\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}\right| \leq 1.96\right) \doteq 0.95=95 \% \\
& P(\hat{p}-1.96 \sqrt{p(1-p) / n} \leq p \leq \hat{p}+1.96 \sqrt{p(1-p) / n}) \doteq 0.95=95 \%
\end{aligned}
$$

The 95% confidence interval for p is

$$
[\hat{p}-1.96 \sqrt{p(1-p) / n}, \hat{p}+1.96 \sqrt{p(1-p) / n}]
$$

The margin of error for a 95% confidence interval for p is $1.96 \sqrt{p(1-p) / n}$ or half the width of the confidence interval. In the formula for the confidence interval above this quantity is subtracted and added to \hat{p}. You may wonder how the formula for the confidence interval is useful since it includes p which is unknown. There are two solutions we can apply.

Firstly, if we assume that p is close to \hat{p} we can substitute in \hat{p} to get the following formula

$$
[\hat{p}-1.96 \sqrt{\hat{p}(1-\hat{p}) / n}, \hat{p}+1.96 \sqrt{\hat{p}(1-\hat{p}) / n}]
$$

Alternatively, we can substitute $\frac{1}{2}$ for p. This is a conservative approach and would result in the widest possible interval we could get for any set of observations:

$$
\left[\hat{p}-1.96 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}, \hat{p}+1.96 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}\right]=[\hat{p}-0.98 / \sqrt{n}, \hat{p}+0.98 / \sqrt{n}]
$$

Example 1

Here is an excerpt from an opinion poll from a recent United States Presidential Election:
"President Barack Obama led Republican challenger Mitt Romney by one point in a poll released last night... The CBS News/New York Times poll... put Obama ahead, 48 percent to 47 percent... The poll of 563 likely voters taken Oct. 25-28 had a margin of error of plus or minus four percentage points."
From the excerpt, $n=563$. If we use the conservative assumption that $p=\frac{1}{2}$ we can calculate the margin of error.

$$
\text { Margin of error }=1.96 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / 563} \doteq 0.0414=4.13 \% \approx 4 \%
$$

So the margin of error for the true proportion based on a sample size of 563 is just a bit greater than 4%. This is exactly what the opinion poll reported. Saying that the margin of error is "plus or minus 4 percentage points" means that half of the width of the confidence interval is approximately 4%.

You do not always have to use a 95% confidence interval. You can use any confidence level you want. For example, if you wanted to calculate a 90% confidence interval you would need to determine the cutoff points on a standard Normal distribution that contain 90% of the area. As shown in Figure ?? these cutoff points are -1.645 and 1.645.

Figure 2: Critical values for 90% confidence interval

If you wanted to calculate a 99% confidence interval you would need to determine the cutoff points on a standard Normal distribution that contain 99% of the area. As shown in Figure ?? these cutoff points are -2.576 and 2.576 .

Figure 3: Critical values for 99% confidence interval

In general, for any value α, you can find a value $z_{\alpha / 2}$ such that the area under the standard Normal curve which is less than $-z_{\alpha / 2}$ is equal to $\alpha / 2$. This is shown in Figure ??.

Figure 4: Critical values for $(1-\alpha) \%$ confidence interval

If you take the interval from $-z_{\alpha / 2}$ to $+z_{\alpha / 2}$ this will contain $(1-\alpha) \%$ of the area under the curve. So the confidence interval will miss the target only $\alpha \%$ of the time. This situation is shown in Figure ??.

Figure 5: Critical values for $(1-\alpha) \%$ confidence interval

Example 2

Let's return to the beer bottle cap example. We flipped a cap 1,000 times and observed 576 reds. In this case $n=1000$ and $\hat{p}=0.576$. We can now calculate the 95% confidence interval for the true probability, p, of the bottle cap landing on the red side.

$$
\begin{aligned}
95 \% \text { CI for } p & =\left[\hat{p}-1.96 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}, \hat{p}+1.96 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}\right] \\
& =[0.545,0.607] \\
& =[54.5 \%, 60.7 \%]
\end{aligned}
$$

We can also calculate the 90% confidence interval for p. Note that this interval is narrower than the 95% confidence interval.

$$
\begin{aligned}
90 \% \text { CI for } p & =\left[\hat{p}-1.645 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}, \hat{p}+1.645 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}\right] \\
& =[0.550,0.602] \\
& =[55.0 \%, 60.2 \%]
\end{aligned}
$$

If we want to be more certain that the confidence interval covers p we can calculate a 99% confidence interval. Note that this interval is wider than both the previous two intervals.

$$
\begin{aligned}
99 \% \text { CI for } p & =\left[\hat{p}-2.576 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}, \hat{p}+2.576 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right) / n}\right] \\
& =[0.535,0.617] \\
& =[53.5 \%, 61.7 \%]
\end{aligned}
$$

This example demonstrates that there is a tradeoff between how certain we want to be and how accurate (narrow) the confidence interval is. If we chose $\alpha=0.05$ we can be 95% confident that the true probability of observing red on a flip of the beer cap is anywhere from 54.5% to 60.7%. But if we want to be more certain by constructing a 99% interval, then the interval $[53.5 \%, 61.7 \%$] will be wider.

