
Introduction to Statistical Ideas and Methods

Confidence Intervals
Robustness of Confidence Intervals

In many inferential procedures, there are necessary conditions that must be satisfied in
order for the sampling distribution of our estimators to be appropriate. An important
consideration in any analysis is to examine whether or not these conditions hold. Without the
necessary conditions, we can not say that a 95% confidence interval covers the true theoretical
parameter for 95% of all data sets. The actual coverage might be much smaller.

There are two necessary conditions which must hold in the case of confidence interval for a
proportion.

1. The n observations are independent. For example each flip of a beer cap must be
independent or people surveyed for a poll should not be related in any way.

2. The sample size n is large enough so that p̂ has approximately a Normal distribution
by the Central Limit Theorem

We will now investigate the effects of the second condition on the coverage of a confidence
interval using an applet, shown in Figure 1 which simulates data and calculates confidence
intervals. This applet uses the notation π for the theoretical parameter we have been calling
p.

Figure 1: Applet for simulating confidence itervals for p by Allan Rossman and Beth Chance
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Example 1
We want to flip a fair coin 10 times so on the applet, set π = 0.5 and n = 10. We get 6
successes and four failures so p̂ = 0.6.

Figure 2: Highlighted confidence interval based on a sample with n = 10 and p̂ = 0.6

Using the 95% confidence interval formula for a proportion and substituting in the known
variables:

95% CI for p = [p̂− 1.96
√
p(1− p)/n, p̂+ 1.96

√
p(1− p)/n]

= [0.6− 1.96
√

0.6(1− 0.6)/n, 0.6 + 1.96
√

0.6(1− 0.6)/n]

= [0.296, 0.904]

In Figure 2, the vertical bar marks the theoretical parameter π = 0.5 and the horizontal
green line plots the confidence interval we calculated above. We can see that the confidence
interval from 0.296 to 0.904 includes 0.5.

We try another sample and again get p̂ = 0.6, shown in Figure 3.
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Figure 3: Sample 2, n = 10 and p̂ = 0.6

The third time we observe p̂ = 0.8, shown in Figure 4. Now the confidence interval for this
sample does not include 0.5. (Note the horizontal line is colored red and does not cross the
vertical bar.)

Figure 4: Sample 3, n = 10 and p̂ = 0.8

So far two out of three simulated confidence intervals have included the theoretical parame-
ter. To better see how well this is working let’s simulate 100 confidence intervals. We expect
that 5% of the time the 95% confidence intervals will not contain the theoretical parame-
ter. So for 100 95% confidence intervals we expect that 5 will not contain the theoretical
parameter.
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Figure 5: 100 confidence intervals based on samples with n = 10 and p = 0.5

As shown in Figure 5, 15 of the 100 confidence intervals based on simulated data did not
contain 0.5. We have only captured the true value of our theoretical parameter 85% of the
time instead of the 95% that the confidence interval was designed for. This is because the
sample size of 10 is too small to rely on the Central Limit Theorem Normal approximation
for the sampling distribution of p̂. Since we have violated one of the assumptions of the
confidence interval procedure for a proportion the results we are getting are not at the
confidence level we expect.

Example 2
Next, for every experiment we will flip the fair coin 100 times. Again we will carry out 100
experiments. This time 94% of our confidence intervals included 0.5, which is very close to
the 95% that we expected (Figure 20).

4



Figure 6: 100 confidence intervals based on samples with n = 100 and p = 0.5

Example 3
When the theoretical parameter p = 0.5 the sampling distribution of p̂ is symmetric with a
strong central peak. A sample size of 100 provided reliable results in this case. This can be
seen in Figure 7.

Figure 7: Sampling distribution for p̂ when p = 0.5 and n = 100

When p is close to 0 or 1, the sampling distribution of p̂ is skewed. For example, if p = 0.05,
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the sampling distribution is skewed to the right. The Normal distribution would not be a
good approximation to this distribution. In such cases, we need a larger sample size before
the normal approximation works well, as shown in Figure 8.

Figure 8: Sampling distribution for p̂ when p = 0.05 and n = 100

Using the applet we will set π = 0.05 and take 100 samples each of size 100.

Figure 9: 100 confidence intervals based on samples with n = 100 and p = 0.05

Instead of 95% of our confidence intervals capturing 0.05, we had 90% of our confidence
intervals capturing our theoretical parameter, shown in Figure 9. We repeat this experiment
several times and find that each time about 90% of the confidence intervals captured the
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theoretical parameter. So the coverage of these intervals is not bad but it is not the 95%
that we claim.

Let’s try something even more extreme. This time we set the probability of success to p =
0.01. The sampling distribution of p̂, shown in Figure 10, is even more sharply skewed.

Figure 10: Sampling distribution for p̂ when p = 0.01 and n = 100

Again we take 100 samples each of size 100. We find that only 59% of the 95% confidence
intervals captured the theoretical parameter. This is shown in Figure 11.

Figure 11: 100 confidence intervals based on samples with n = 100 and p = 0.01
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If we repeat this procedure but this time take 100 samples each of size 1000 we find that
94% of the intervals contain the theoretical parameter used to simulate the data. This is
shown in Figure 12.

Figure 12: 100 confidence intervals based on samples with n = 1000 and p = 0.01

Now, let’s look at the necessary conditions for the confidence intervals for means. When these
conditions are met we are able to claim that the confidence interval contains the theoretical
parameter the right percentage of time.

1. The n observations are independent

2. The sample size n is large enough so that X is approximately Normally distributed

We will focus on the second condition and use another applet to simulate data from a known
distribution and compare our results under different conditions.

Example 4
The theoretical model we specify is a Normal distribution with µ = 500 and σ = 100. The
theoretical parameter we want to capture in the confidence interval µ is marked by the
vertical blue line below the histogram in Figure 13.
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Figure 13: Theoretical distribution with µ = 500 and σ = 100

We simulate a sample of size 10, shown in Figure 14. The sample mean X = 510 and the
sample standard deviation s = 91.21. Again we will be calculating 95% confidence intervals
throughout these examples.

Figure 14: Confidence interval based on a sample of size n = 10 from a distribution with
µ = 500 and σ = 100

The critical value we need from the t distribution with 9 degrees of freedom for a 95%
confidence interval is approximately 2.26. The confidence interval for µ based on this sample
is

95% CI for µ =

[
X − t0.025,df=9

s√
n
,X + t0.025,df=9

s√
n

]
=

[
510.00− 2.26(

91.21√
10

), 510.00 + 2.26(
91.21√

10
)

]
= [441.81, 575.19]
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As can be seen in Figure 14, the confidence interval includes the theoretical parameter.

Shown in Figure 15 is when we simulate 100 samples of size 10. We find that 95 of the
95% confidence intervals captured the true mean just as we expected. The t distribution
confidence interval for the mean works extremely well in terms of capturing the true mean
as many times as it is supposed to, when the normal distribution is the actual distribution
of the data.

Figure 15: 100 confidence intervals based on samples of size n = 10 from a distribution
with µ = 500 and σ = 100

Example 5
Now we will simulate data from a skewed distribution instead of a Normal distribution
and try to estimate the mean. The mean of the new theoretical model is µ = 223.1 and
σ = 133.18. This model is shown in Figure 16.

Figure 16: Skewed theoretical distribution with µ = 223.10 and σ = 133.18
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We take 100 samples of size 10 from this skewed distribution and find that we have 96%
coverage since only 4 of the 95% confidence intervals failed to capture the theoretical mean,
as shown in Figure 17.

Figure 17: Confidence interval coverage of µ = 223.10 based on a sample of size n = 10
from a skewed distribution

Even when the theoretical model from where our data is coming from is not Normal the t
confidence interval procedure works extremely well at covering the mean the right percentage
of times.

Example 6
For t confidence intervals for the mean to not work well, we need fairly extreme situations.
Figure 18 shows one such example.

Figure 18: Extremely skewed theoretical distribution
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This theoretical model puts most of the probability on values on the left, but also makes it
possible to see some very large outliers. The theoretical mean is µ = 83.49 and σ = 207.36.
We take 20 samples of size 10 and find that 15 confidence intervals fail to capture the mean.
(The coverage rate is 5/20 = 25% instead of 95%). This is shown in Figure 19

Figure 19: Confidence interval coverage of µ based on samples of size n = 10 from extremely
skewed distribution

The Central Limit Theorem is an asymptotic result so it works better the larger the sample
size n is. The sampling distribution X will be closer to Normally distributed for a larger
sample size. To see the effect of increased sample size on the coverage of µ we will take 100
samples of size n = 40.
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Figure 20: Confidence interval coverage of µ based on samples of size n = 40 from extremely
skewed distribution

In the resulting 100 confidence intervals based on samples of size 40 (some shown in Fig-
ure 20), we miss the theoretical mean 10 times and obtain 90% coverage. Again, these are
95% confidence intervals, so the coverage is not quite what we claimed, but it is very close.
This illustrates how well the t confidence intervals for the mean work, even with an extreme
situation and a sample size of only 40.

To summarise, t confidence intervals for the mean are extremely robust. These confidence
intervals match closely the coverage of the theoretical parameter claimed even when some
of the necessary conditions with regard to sample size are not satisfied. Even though both
confidence intervals for means and confidence intervals for proportions both rely on the
Central Limit Theorem the latter tends to require much larger sample sizes. Remember that
if the observations are not independent, neither of these procedures apply.
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