
Introduction to Statistical Ideas and Methods

Compare two groups in R

In this document we show how to compare 2 groups. We start with analysis of matched pairs
and then show how make confidence intervals and tests for independent samples. We will show
procedures for proportions and means of quantitative variables.

Matched Pairs

This section shows how to find confidence intervals and perform statistical testing for the difference
between two dependent groups. Consider first the ‘Skeleton’ data set:

Skeleton.data=read.table("SkeletonDataComplete.txt",header=TRUE)

head(Skeleton.data)

attach(Skeleton.data)

Sex BMIcat BMIquant Age DGestimate DGerror SBestimate SBerror

1 2 underweight 15.66 78 44 -34 60 -18

2 1 normal 23.03 44 32 -12 35 -9

3 1 overweight 27.92 72 32 -40 61 -11

4 1 overweight 27.83 59 44 -15 61 2

5 1 normal 21.41 60 32 -28 46 -14

6 1 underweight 13.65 34 25 -9 35 1

We have two methods of age estimation here. It is the method of Di Gangi and Suchey-Brooks
method. The error of estimation is captured in two variables ‘DGerror’ and ‘SBerror’ respectively.
The goal is to understand if both methods give the same results or one method is more precise than
the other. First let’s look at ‘DGerror’ variable. We get summary statistics for this variable and
construct a boxplot (‘border’ argument in the ‘boxplot’ function specifies the color of the border
of boxplot):

summary(DGerror)

boxplot(DGerror,border=’blue’,ylim=c(-60,40),ylab="Difference between estimated

and actual age (years)", main="Method of Di Gangi et al.")

Min. 1st Qu. Median Mean 3rd Qu. Max.

-60.00 -23.00 -13.00 -14.15 -5.00 32.00

●

●

●

●

●

−
60

−
40

−
20

0
20

40

Method of Di Gangi et al.

D
iff

er
en

ce
 b

et
w

ee
n 

es
tim

at
ed

 a
nd

 a
ct

ua
l a

ge
 (

ye
ar

s)

Similarly we do for the ‘SBerror’ variable:

summary(SBerror)

boxplot(SBerror,border=’orange’,ylim=c(-60,40),ylab="Difference between estimated

and actual age (years)", main="Suchey-Brooks Method")
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Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

-36.000 -14.000 -6.000 -7.259 0.000 20.000 2
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Note that 2 variables are missing in the ‘SBerror’. It seems that ‘Suchey-Brooks’ method is
less biased than Di Gangi’s method. Let’s also make two boxplots side by side:

boxplot(list(DGerror,SBerror),ylab="Difference between estimated and actual age (years)",

border=c(’blue’,’orange’),names=c(’Di Gangi et al.’,’Suchey-Brooks’))
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We want to analyse the difference between these two variables. Since these two variables are
dependent (since two observations are taken from the same skeleton) we just find difference between
‘SBerror’ and ‘DGerror’ and call this new variable ’diff’:

diff=SBerror-DGerror

Next let’s make a boxplot, histogram and find summary statistics of the difference variable
(‘par(mfrow=c(1,2))’ make two plots in one chart):

par(mfrow=c(1,2))

boxplot(diff,border=’darkviolet’,ylab="Difference between Suchey-Brooks and

Di Gangi et al. errors in age estimation")

hist(diff,col=’darkviolet’,main=’’)

summary(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

-26.000 2.000 6.000 6.854 14.000 40.000 2
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The distribution of the differences looks nearly normal and therefore we can use one sample
t-test to check if the true mean of difference is zero or not (two sided alternative). So find sample
mean, sample variance and sample size of ‘diff’ variable:

diff.bar=mean(diff,na.rm=TRUE)

diff.var=var(diff,na.rm=TRUE)

N=400-2

mu0=0

Note that since ‘diff’ variable contains two missed values we must put ‘na.rm=TRUE’ in the
arguments of ‘mean’ and ’var’ functions. Sample size of ‘diff’ is 400 − 2, once again because two
values are missing and we have a total of 400 skeletons. Finally we proceed in a usual way:

t.stat=(diff.bar-mu0)/sqrt( diff.var/N )

p.val=2*(pt(-abs(t.stat),df=N-1))

p.val

[1] 6.024137e-30

The p-value is very small and hence we reject null hypothesis that two methods are the same
(have the same average error) and conclude that there is a difference between them. Instead of using
the long way that we have implemented above, we can use ‘t.test’ function with ‘paired=TRUE’
argument to indicate that we use matched pairs:

t.test(SBerror,DGerror,alternative="two.sided",paired=TRUE)$p.value

[1] 6.024137e-30

Two p-values are completely the same. If we are interested in the 95% confidence interval for
the difference we can use the formulas from the one sample CI or use the ’t.test’:

t.test(SBerror,DGerror,conf.level=0.95,alternative="two.sided",paired=TRUE)

Paired t-test

data: SBerror and DGerror

t = 12.3681, df = 397, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

5.764761 7.943782

sample estimates:

mean of the differences

6.854271

Hence we are 95% sure that the true mean difference of errors is between 5.76 and 7.94.
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Comparing Two Proportions

In this section we show how two compare two independent proportions. We start with the ‘Support
for the Toronto mayor Rob Ford’ example. We have two support surveys. In the first one the sample
size was 1050 with sample proportion of support equals to 0.57 and another one with sample size
of 1046 and sample proportion 0.42. The goal is to get 95% confidence interval for the difference
in proportions. As usual we start with variable initiation and find the critical value:

N1=1050

p1.hat=0.57

N2=1046

p2.hat=0.42

conf.level=0.95

crit.val=qnorm( 1-(1-conf.level)/2 )

Next we use the formula for the margin of error for difference in proportions and then print
the answer using ‘cat’ function:

ME=crit.val*sqrt( p1.hat*(1-p1.hat)/N1 + p2.hat*(1-p2.hat)/N2 )

cat(’CI for p1-p2 is from ’,p1.hat-p2.hat-ME,’ to ’,p1.hat-p2.hat+ME, ’\n’)

CI for p1-p2 is from 0.1076759 to 0.1923241

Hence we are 95% confident that the true proportion dropped from 0.10 to 0.19. To use the
‘prop.test’ here we first need to construct a 2 by 2 table. In the first row we have results from
the first survey and in the second one from the second survey. The first column is total number
of individuals that supported the mayor and in the second column number of people in a survey
that did not support the mayor. To get this table use the following commands:

table=rbind(c(p1.hat*N1,(1-p1.hat)*N1),c(p2.hat*N2,(1-p2.hat)*N2))

prop.test(table,conf.level=0.95,correct=FALSE)$conf.int

[1] 0.1076759 0.1923241

attr(,"conf.level")

[1] 0.95

You see that we get exactly the same confidence interval. Now we repeat the same procedure
but for the ‘Support for US president Obama’ example:

N1=1010

p1.hat=0.52

N2=563

p2.hat=0.48

table=rbind(c(p1.hat*N1,(1-p1.hat)*N1),c(p2.hat*N2,(1-p2.hat)*N2))

prop.test(table,conf.level=0.95,correct=FALSE)$conf.int

[1] -0.0115015 0.0915015

attr(,"conf.level")

[1] 0.95

In this case we cannot be sure that the support dropped since 0 is inside the confidence interval.

Let’s return to the ‘Rob Ford polls’ example. Here we want to test equality of two proportions.
The formula is completely the same as before but with a pooled sample proportion:

N1=1050

p1.hat=0.57

N2=1046

p2.hat=0.42

p.hat.pooled=(N1*p1.hat+N2*p2.hat)/(N1+N2)

z.stat=(p1.hat-p2.hat)/sqrt( p.hat.pooled*(1-p.hat.pooled)*(1/N1 + 1/N2) )

p.val=2*pnorm(-abs(z.stat))

p.val
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[1] 6.527937e-12

The p-value is very small and we reject the null hypothesis that two proportions are the same
and conclude that they are not the same. Equivalently we can use the ‘prop.test’ function with
appropriate table in the argument.

table=rbind(c(p1.hat*N1,(1-p1.hat)*N1),c(p2.hat*N2,(1-p2.hat)*N2))

prop.test(table,alternative="two.sided",correct=FALSE)

2-sample test for equality of proportions without continuity

correction

data: table

X-squared = 47.1643, df = 1, p-value = 6.528e-12

alternative hypothesis: two.sided

95 percent confidence interval:

0.1076759 0.1923241

sample estimates:

prop 1 prop 2

0.57 0.42

See that the p-value is the same as we got before. This approach is however much quicker and
easier. Returning to the ‘Obama polls’ we want to test that two proportions are the same against
the alternative that they are not the same. Using the ‘prop.test’ function we get:

N1=1010

p1.hat=0.52

N2=563

p2.hat=0.48

table=rbind(c(p1.hat*N1,(1-p1.hat)*N1),c(p2.hat*N2,(1-p2.hat)*N2))

prop.test(table,alternative="two.sided",correct=FALSE)

2-sample test for equality of proportions without continuity

correction

data: table

X-squared = 2.3139, df = 1, p-value = 0.1282

alternative hypothesis: two.sided

95 percent confidence interval:

-0.0115015 0.0915015

sample estimates:

prop 1 prop 2

0.52 0.48

The p-value for this data is 0.13 which is quite large and we do not have enough statistical
evidence to reject null hypothesis. Two actual proportions can be the same.
To finish this section we consider the ‘Patricia study’. The first sample proportion here is the
proportion of women who got HPV vaccine and have HPV infection. The second sample proportion
is proportion of women who got some other vaccine and have HPV infection. We first fill up the
statistics for this study, and construct an appropriate table for ‘prop.test’ function:

N1=6163

p1.hat=23/N1

N2=6018

p2.hat=345/N2

table=rbind(c(p1.hat*N1,(1-p1.hat)*N1),c(p2.hat*N2,(1-p2.hat)*N2))

table
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[,1] [,2]

[1,] 23 6140

[2,] 345 5673

Hence we see that in the study with the HPV vaccine, 23 women had HIV infection and 6140
did not have and similarly for the second study (with some other vaccine) 345 had the infection
while 5673 did not. Next we just use ‘prop.test’ function and extract only the p-value with the $
sign:

prop.test(table,conf.level=0.95,alternative="two.sided",correct=FALSE)$p.value

[1] 6.893919e-67

The p-value is very small and therefore we reject the null hypothesis and conclude that the
HPV vaccine does make a difference.

Comparing Two Means

In this section we show how to compare two independent quantitative groups. Consider first the
‘Skeleton’ data set. We want to find the 95% confidence interval for the difference between DGerror
for male and female. First we divide ‘DGerror’ variable into two variables corresponding to male
and female and call them ‘DGerror.male’ and ‘DGerror.female’. We can do that using the next
commands:

DGerror.male=DGerror[Sex==1]

DGerror.female=DGerror[Sex==2]

The next step is to find sample mean, sample variance and sample sizes for each variable:

N1=length(DGerror.male)

N2=length(DGerror.female)

x1.bar=mean(DGerror.male)

x2.bar=mean(DGerror.female)

sam.var1=var(DGerror.male)

sam.var2=var(DGerror.female)

As usual for means, we will use student-t distribution with appropriate degrees of freedom.
Two compare two means as we do here the formula for degrees of freedom is complicated but we
still to it for completeness:

DF=(sam.var1/N1 + sam.var2/N2)^2 / ( (sam.var1/N1)^2/(N1-1) + (sam.var2/N2)^2/(N2-1) )

DF

[1] 200.0947

Finally we find critical value than get margin of error and print the answer:

conf.level=0.95

crit.val=qt(1-(1-conf.level)/2 , df=DF)

ME=crit.val*sqrt(sam.var1/N1 + sam.var2/N2)

cat(’CI for mu1-mu2 is from ’,x1.bar-x2.bar-ME,’ to ’,x1.bar-x2.bar+ME, ’\n’)

CI for mu1-mu2 is from 1.026367 to 7.374602

Hence we are 95% confident that error of estimation for male is from 1.03 to 7.37 larger than
for female. Of course there is a shorter way to get this confidence interval using ‘t.test’ function:

t.test(DGerror.male,DGerror.female,conf.level=0.95)$conf.int
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1] 1.026367 7.374602

attr(,"conf.level")

[1] 0.95

We get exactly the same CI but much easier.

Consider next the ‘Life Expectancy’ data set:

LifeExp.data=read.table("LifeExpComplete.txt",header=TRUE)

head(LifeExp.data)

attach(LifeExp.data)

Country Region LifeExp GDP HIV

1 Afghanistan SAs 48.673 NA NA

2 Albania EuCA 76.918 NA NA

3 Algeria MENA 73.131 6406.817 0.1

4 Angola SSA 51.093 5519.183 2.0

5 Argentina Amer 75.901 15741.046 0.5

6 Armenia EuCA 74.241 4748.929 0.1

In this example we need 95% confidence interval for difference between ‘LifeExp’ for East Asia
& Pacific and South Asia. First we construct two variables, one is ‘LifeExp’ for ‘EAP’ region and
second for ‘SAs’ region:

LifeExp.EAP=LifeExp[Region==’EAP’]

LifeExp.SAs=LifeExp[Region==’SAs’]

To finish we use the ‘t.test’ function:

t.test(LifeExp.EAP,LifeExp.SAs,conf.level=0.95)$conf.int

[1] -1.216372 13.323188

attr(,"conf.level")

[1] 0.95

So we are 95% sure that the true difference in averages of Life expectancy for these two regions
is between −1.22 and 13.32.

The other important inference topic is testing. Consider again ‘DGerror.male’ and ‘DGer-
ror.female’ variables. We have already found the confidence interval for the difference in means,
now we want to test whether two means are the same or not (two sided alternative). We start with
basic statistics and degrees of freedom calculation:

N1=length(DGerror.male)

N2=length(DGerror.female)

x1.bar=mean(DGerror.male)

x2.bar=mean(DGerror.female)

sam.var1=var(DGerror.male)

sam.var2=var(DGerror.female)

DF=(sam.var1/N1 + sam.var2/N2)^2 / ( (sam.var1/N1)^2/(N1-1) + (sam.var2/N2)^2/(N2-1) )

Finishing we find test statistic and two sided p-value:

t.stat=(x1.bar-x2.bar)/sqrt(sam.var1/N1 + sam.var2/N2)

p.val=2*pt(-abs(t.stat),df=DF)

p.val

[1] 0.009752372

The p-value is quite small and we reject the null hypothesis that error of estimation for male
and female is the same. Using the ‘t.test’ function we get:

7



t.test(DGerror.male,DGerror.female,alternative="two.sided")

Welch Two Sample t-test

data: DGerror.male and DGerror.female

t = 2.6095, df = 200.095, p-value = 0.009752

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

1.026367 7.374602

sample estimates:

mean of x mean of y

-12.90036 -17.10084

In the second row we observe the test statistic, the ‘complicated’ degrees of freedom and the
p-value which is exactly the same that we have got before. Using the ‘t.test’ we can compare
‘LifeExp.EAP’ with ‘LifeExp.SAs’:

t.test(LifeExp.EAP,LifeExp.SAs,alternative="two.sided")

Welch Two Sample t-test

data: LifeExp.EAP and LifeExp.SAs

t = 1.8809, df = 9.088, p-value = 0.09236

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.216372 13.323188

sample estimates:

mean of x mean of y

73.08603 67.03262

Here the p-value is 0.09 which is considered as large and hence there is no statistical evidence
to reject the hypothesis that ‘Life Expectancy’ for two region are same. So they can be the same.

Sometimes we can assume that the variances for each group are the same. Then calculation
for degrees of freedom become very easy. Suppose that true variances of ‘DGerror.male’ and
‘DGerror.female’ are the same. Then we calculate the pooled variance and get the test statistic:

sam.var.pooled=( (N1-1)*sam.var1 + (N2-1)*sam.var2 )/ (N1+N2-2)

t.stat=(x1.bar-x2.bar)/sqrt(sam.var.pooled/N1 + sam.var.pooled/N2)

t.stat

[1] 2.740948

Once we know the test statistic we can easily find the two sided p-value (note that degrees of
freedom in this case is straight forward):

p.val=2*pt(-abs(t.stat),df=(N1+N2-2))

p.val

[1] 0.006401581

The p-value is different than what we have got when we did not assume that two variances are
the same. The conclusion however is the same, we reject null hypothesis. To use ‘t.test’ with equal
variance assumption we must put ‘var.equal=TRUE’ in the argument:

t.test(DGerror.male,DGerror.female,alternative="two.sided",var.equal=TRUE)
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Two Sample t-test

data: DGerror.male and DGerror.female

t = 2.7409, df = 398, p-value = 0.006402

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

1.187691 7.213277

sample estimates:

mean of x mean of y

-12.90036 -17.10084

Summary of R Functions

We give a short summary of all new and/or important R functions [and arguments] that we used
in this Module:

Distributions

pnorm()

qnorm()

qt() [df]

Confidence Intervals and Testing

prop.test() [x,n,p,alternative,conf.level,correct]

t.test() [x,y,mu,alternative,conf.level,paired]

Miscellaneous

rbind()

summary()

.
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