
Introduction to Statistical Ideas and Methods

Linear Regression in R

In this document we describe how to perform a simple linear regression in R. We show how
to get coefficients of the regression line, test for significance of the slope, find R2 statistic, make
transformations to variables and much more. We also show how to make plot of the data with
regression as well as plotting the residuals.

Introduction

We start with the ‘Babies Crawling’ data set and we want to investigate the relationship between
the temperature and the average crawling age in weeks. First we download the data set into R
(since we have names for the variables in the data set we need to put ‘header=TRUE’ in the
‘read.table’ function):

Crawling.data = read.table(’BabiesCrawlingData.txt’,header=TRUE)

attach(Crawling.data)

As usual we use ‘attach’ function in order to use the variables in the data set individually with the
names correspond to the header titles. Since the ‘temperature’ variable here is in Fahrenheit but
we want it in Celsius, we transform the variable by subtracting 32 and multiplying by 5

9 :

temperature=(temperature-32)/9*5

Next let’s make a scatter plot of the ‘Average crawling age’ versus ’Temperature’, note that the
first variable in the ‘plot’ function is horizontal, second one is vertical (response), xlab and ylab
specify the x-axis and y-axis labels:

plot(temperature,avg_crawling_age,xlab=’Temperature (degrees Celsius)’,

ylab=’Average crawling age (weeks)’)
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It seems that linear regression model can be appropriate in this case and we want to plot
these data with the regression line. To do that we first make a new object which contains all the
information about the regression line and we call it ‘lin.reg.crawl’:

lin.reg.crawl=lm(avg_crawling_age~temperature)

Note that the first variable in the ‘lm’ function is the response variable, the second one is our
predictor or independent variable and in the middle is a ‘tilde’ symbol. Now we are ready to plot
the scatterplot, then add the regression line with ‘abline’ function and add the title with the ’title’
function:

plot(temperature,avg_crawling_age,xlab=’Temperature (degrees Celsius)’,

ylab=’Average crawling age (weeks)’)

abline(lin.reg.crawl)

title(’Average crawling age versus Temperature with Regression Line’)
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Average crawling age versus Temperature with Regression Line

To find the regression coefficients we can first find mean of the temperature, mean of the
crawling age, standard deviation of the temperature, standard deviation of the crawling age and
correlation between temperature and crawling age:

mean.temp=mean(temperature)

sd.temp=sd(temperature)

mean.crawl=mean(avg_crawling_age)

sd.crawl=sd(avg_crawling_age)

cor.temp.crawl=cor(avg_crawling_age,temperature)

Here the ‘cor’ function finds the correlation between two variables. Now we find slope (b1) and
intersection (b0) from these statistics:

b1=sd.crawl/sd.temp*cor.temp.crawl

b0=mean.crawl-b1*mean.temp

b0;b1

[1] 33.19041

[1] -0.1399305

Hence we see that the slope is about −0.14 while the intersection is 33.19. Note that the object
‘lin.reg.crawl’ which we have constructed before contains all the information about the regression
line, therefore instead of finding the coefficients using different statistics as we did above, we can
just type:

lin.reg.crawl

Call:

lm(formula = avg_crawling_age ~ temperature)

Coefficients:

(Intercept) temperature

33.1904 -0.1399

We get exactly the same coefficients. Finally if we want to predict the average crawling age
when temperature is 15 degrees we can get it using a simple equation:

b0+b1*15

[1] 31.09145

2



Some caution

We start this section with the ‘CFC’ data set. First we download the data set (‘head’ function
shows the first six observations):

CFC.data = read.table(’CFCdata.txt’,header=TRUE)

head(CFC.data)

attach(CFC.data)

year month time cfc11

1 1977 1 1977.00 139.9

2 1977 2 1977.08 139.5

3 1977 3 1977.17 139.0

4 1977 4 1977.25 134.1

5 1977 5 1977.33 135.0

6 1977 6 1977.42 143.4

The goal is to investigate the relationship between ‘time’ and ‘cfc11’. These data contain
information till 2005 but we first want to analyse relationship before 1990, which are observations
from 1 to 156. So we construct new variables with first 156 observations:

time.till.1990=time[1:156]

cfc11.till.1990=cfc11[1:156]

Now we create linear regression model for these two variables (‘cfc11.till.1990’ is the response
while ‘time.till.1990’ is the predictor)

lin.reg.cfc=lm(cfc11.till.1990~time.till.1990)

Next we make a plot of the ‘cfc11’ versus ‘time’ until 1990 with regression line:

plot(time.till.1990,cfc11.till.1990,xlab=’Year’,ylim=range(100:300),

xlim=range(1975:2005),ylab=’CFC-11 concentration (parts per trillion)’,

main=’Atmospheric concentration of CFCs with Regression’)

abline(lin.reg.cfc,col=’blue’)
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It seems that linear regression fits quite well. We also find coefficients of the regression line:

lin.reg.cfc

Call:

lm(formula = cfc11.till.1990 ~ time.till.1990)

Coefficients:

(Intercept) time.till.1990

-19064.028 9.711

Now lets plot all the data points with the regression line:
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plot(time,cfc11,xlab=’Year’,ylim=range(100:300),xlim=range(1975:2005),

ylab=’CFC-11 concentration (parts per trillion)’)

abline(lin.reg.cfc,col=’blue’)
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We clearly see that the linear model is not appropriate here. A very important part in checking
whether a linear regression is appropriate or not is to plot residuals versus fitted values. Lets
make this plot (note that ‘lin.reg.cfc$fitted’ and ‘lin.reg.cfc$residuals’ extract the fitted value and
residuals form the regression object)

plot(lin.reg.cfc$fitted,lin.reg.cfc$residuals,xlab=’Fitted values’,

ylab=’Residuals’,main=’Residual versus fitted’ )

abline(h=0,lty=3)
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Here ‘abline(h=0,lty=3)’ produces a horizontal, dashed line (h=0 indicates a horizontal line
with 0 y-axis intercept, while lty prodices dashed line). This plot also shows that there is a problem
with simple regression since we observe some pattern in the residual plot.

Next we move back to the ‘Average crawling age’ data. In the last section we have already
created the ‘lin.reg.crawl’ regression model. Now we make a scatter plot of the response versus
predictor with the regression line and the plot of residuals versus the temperature in the same plot.
To make two charts in the same plot, just type ‘par(mfrow=c(1,2))’ before the plots, c(1,2) means
that we have two plot in one row:

par(mfrow=c(1,2))

plot(temperature,avg_crawling_age,xlab=’Temperature (degrees Celsius)’,

ylab=’Average crawling age (weeks)’)

abline(lin.reg.crawl)

plot(temperature,lin.reg.crawl$residuals,xlab=’Temperature (degrees Celsius)’,

ylab=’Residuals’)

abline(h=0,lty=3)
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As always we can get coefficients of the regression line:

lin.reg.crawl

Call:

lm(formula = avg_crawling_age ~ temperature)

Coefficients:

(Intercept) temperature

33.1904 -0.1399

Based on the above plot we observe one observation which has lowest residual and might be an
influential point. Hence we want to make the analysis again but without this observation. To do
that we construct two new variables without this point (note that this unusual observation is on
the fifth place in the data set)

avg_crawling_age.out.rem=avg_crawling_age[-5]

temperature.out.rem=temperature[-5]

Square bracket with minus ([-x]) just removes the xth point from the variable. Next we create
a linear regression object for these variables without the potential outlier and make a scatter plot
and residual plot:

lin.reg.crawl.out.rem=lm(avg_crawling_age.out.rem~temperature.out.rem)

par(mfrow=c(1,2))

plot(temperature.out.rem,avg_crawling_age.out.rem,xlab=’Temperature

(degrees Celsius)’,ylab=’Average crawling age (weeks)’)

abline(lin.reg.crawl)

plot(temperature.out.rem,lin.reg.crawl.out.rem$residuals,

xlab=’Temperature (degrees Celsius)’,ylab=’Residuals’)

abline(h=0,lty=3)
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Then we get regression coefficients for the data without the point in a usual way:

lin.reg.crawl.out.rem
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Call:

lm(formula = avg_crawling_age.out.rem ~ temperature.out.rem)

Coefficients:

(Intercept) temperature.out.rem

33.4299 -0.1361

Since the coefficients have not changed by much we cannot say that the removed observation
is influential.

The coefficient of determination

An important question in the regression analysis is to find how well a regression line fits the data.
One measure of the fit is the coefficient of determination or R2. Consider first the ‘Average crawling
age’ data. To find R2 we need to find sum of squares total, sum of squares regression or sum of
squares residuals. Lets find all of them using R software. First we find mean of the response:

mean.crawl=mean(avg_crawling_age)

Now we can find total SS:

SStot=sum( (avg_crawling_age-mean.crawl)^2 )

SStot

[1] 34.09617

Note when you just type the name of the variable then R returns the value of this variable.
Since we have already created the ‘lin.reg.crawl’ object of linear regression we can use it to find
fitted values. So we easily get SS regression and SS residual:

SSreg=sum( (lin.reg.crawl$fitted-mean.crawl)^2 )

SSreg

[1] 16.69332

SSres=sum( (avg_crawling_age-lin.reg.crawl$fitted)^2 )

SSres

[1] 17.40285

Note that if we add SS regression with SS residual, we get exactly SS total. Now we are ready
to find R2 statistic:

R.square=SSreg/SStot

R.square

[1] 0.4895952

Also in a simple linear regression, R2 should be the same as correlation squared. Lets check
that it is true

cor(temperature,avg_crawling_age)^2

[1] 0.4895952

As you can see we get exactly the same answers. There is a third way (most convenient) to
find R2. As we have mentioned before ‘lin.reg.crawl’ object contains all the information about the
regression and certainly it also contains the coefficient of determination. We can get it using the
next command:
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summary(lin.reg.crawl)$r.squared

[1] 0.4895952

Once again we get exactly the same answer. To finish this section let us return to the ‘CFC11’
data set. We focus on the data before 1990.

plot(time.till.1990,cfc11.till.1990,xlab=’Year’,ylim=range(100:300),

xlim=range(1975:2005),ylab=’CFC-11 concentration (parts per trillion)’,

main=’Atmospheric concentration of CFCs with Regression’)

abline(lin.reg.cfc,col=’blue’)
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Even though we know that linear regression is not appropriate for these data, lets get R2

anyway.

summary(lin.reg.cfc)$r.squared

[1] 0.995721

Hence we see that 99.6% of variation is explained by this regression line.

Inference for the slope

In this section we show how to test that a particular estimate (of slope or intersection) is statistically
significant or not. We start with ‘Skeleton’ data. Doing the standard procedures we get:

Skeleton.data = read.table(’SkeletonDataComplete.txt’,header=TRUE)

head(Skeleton.data)

attach(Skeleton.data)

Sex BMIcat BMIquant Age DGestimate DGerror SBestimate SBerror

1 2 underweight 15.66 78 44 -34 60 -18

2 1 normal 23.03 44 32 -12 35 -9

3 1 overweight 27.92 72 32 -40 61 -11

4 1 overweight 27.83 59 44 -15 61 2

5 1 normal 21.41 60 32 -28 46 -14

6 1 underweight 13.65 34 25 -9 35 1

Our response in this analysis would be ‘DGerror’ variable, lets first make a boxplot of this
variable.

boxplot(DGerror,main=’Boxplot of error in age estimation’,ylab=’Estimated age

- Actual age (years)’ )
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Since we are interested in the relationship between ‘BMIquant’ and ‘DGerror’, we make a
scatter plot of these two variables:

plot(BMIquant,DGerror,xlab=’BMI (kg per metre squared)’,ylab=’Estimated age

- Actual age (years)’)
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Next we want to fit a regression line to this plot. So we first construct a regression object in a
usual way:

lin.reg.error=lm(DGerror~BMIquant)

Call:

lm(formula = DGerror ~ BMIquant)

Coefficients:

(Intercept) BMIquant

-23.2875 0.4061

Hence the slope is 0.4061 and intercept is −23.2875. We make a scatterplot with the regression
line:

plot(BMIquant,DGerror,xlab=’BMI (kg per metre squared)’,ylab=’Estimated age

- Actual age (years)’)

abline(lin.reg.error,col=’blue’)
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As explained in the last section R2 statistic is an important measure of the fit in linear regres-
sion; we can easily get:

summary(lin.reg.error)$r.squared

[1] 0.01863018

Hence less than 2% of variation of the response is explained by this regression. But we have
also a very important question: is the slope statistically significant? Because if it is not, then
‘BMIquant’ is not important for the prediction of ‘DGerror’. We can easily answer this question
(and not only for the slope but also for the intercept) using the ‘summary’ function:

summary(lin.reg.error)

Call:

lm(formula = DGerror ~ BMIquant)

Residuals:

Min 1Q Median 3Q Max

-43.351 -7.918 0.545 9.171 48.602

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -23.2875 3.3973 -6.855 2.73e-11 ***

BMIquant 0.4061 0.1478 2.749 0.00625 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 14.01 on 398 degrees of freedom

Multiple R-squared: 0.01863, Adjusted R-squared: 0.01616

F-statistic: 7.556 on 1 and 398 DF, p-value: 0.006255

This output has much information but the p-values are under Pr(> |t|). So we see that the
p-value for the slope is 0.00625 which is quite small and therefore we conclude that ‘BMIquant’
variable is important for prediction and we should not ignore it. Also note that in the above output
we have ‘Multiple R-squared’ which is the coefficient of determination.

Now we return to the ‘Crawling’ data set. We want to check whether temperature really effects
the average crawling age or not.

summary(lin.reg.crawl)

Call:

lm(formula = avg_crawling_age ~ temperature)

Residuals:

Min 1Q Median 3Q Max

-3.0556 -0.5712 0.5221 0.8029 1.4334

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.19041 0.59570 55.716 8.41e-14 ***

temperature -0.13993 0.04518 -3.097 0.0113 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.319 on 10 degrees of freedom

Multiple R-squared: 0.4896, Adjusted R-squared: 0.4386

F-statistic: 9.592 on 1 and 10 DF, p-value: 0.01131

Based on the output we conclude that the p-value for the slope is 0.0113 which can be considered
as small and therefore temperature is statistically significant.
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Checking for conditions

In this section we focus on the new data set ‘Coffee Shop’. As usual we input the data, and observe
first several observations:

Coffee.data = read.table(’Coffee_Shop.txt’,header=TRUE)

head(Coffee.data)

attach(Coffee.data)

calories carb type

1 350 67 bakery

2 350 64 bakery

3 420 59 bakery

4 490 75 bakery

5 130 17 bakery

6 370 47 bakery

In this example we want to fit a linear regression with ‘carb’(carbohydrates) as the response
and ‘calories’ variable as the predictor.

lin.reg.coffee=lm(carb~calories)

plot(calories,carb,xlab=’Calories’,ylab=’Carbohydrates (g)’)

abline(lin.reg.coffee,col=’blue’)
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Regression analysis is not complete without the residual plot, so we make residuals versus
‘calories’ scatter-plot with horizontal dashed line:

plot(calories,lin.reg.coffee$residuals,xlab=’Calories’,ylab=’Residuals’)

abline(h=0,lty=3)
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We immediately see a problem. The variance is not constant and increases as ‘calories’ increase.
Hence it is not appropriate to carry out inference on the slope of the regression line in this case.
Lets also make a quantile-quantile plot of the residuals:

qqnorm(lin.reg.coffee$residuals)
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The points on this plot should lie on a straight line (and that would indicate that residuals
have normal distribution). In this example the plot is generally straight with some small departure
from linearly in the right tail.

Transformations

As shown in the last section, linear regression is not appropriate in some cases. In this section we
show how to transform predictor and/or response to make linear regression valid. Consider the
‘Life Expectancy’ data set.

LifeExp.data = read.table(’LifeExpComplete.txt’,header=TRUE)

head(LifeExp.data)

attach(LifeExp.data)

Country Region LifeExp GDP HIV

1 Afghanistan SAs 48.673 NA NA

2 Albania EuCA 76.918 NA NA

3 Algeria MENA 73.131 6406.817 0.1

4 Angola SSA 51.093 5519.183 2.0

5 Argentina Amer 75.901 15741.046 0.5

6 Armenia EuCA 74.241 4748.929 0.1

Next we plot ‘LifeExp’ versus ‘GDP’:

plot(GDP,LifeExp,xlab=’GDP ($US, in 2000)’,ylab=’Life expectancy (years)’)
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Clearly the relationship is not linear. However we see that ‘GDP’ variable has many small
values and several observations are very large. Hence base 10 log transformation may help in this
situation. First we construct a new variable ‘GDP.log’ that will store base 10 logs of the original
‘GDP’ variable

GDP.log=log10(GDP)

Now we make two histograms in one plot. The first one is histogram of the original variable,
second one of the ‘GDP.log’:
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par(mfrow=c(1,2))

> hist(GDP/1000,xlab=’GDP ($1000 US, in 2000)’)

> hist(GDP.log,xlab=’Base 10 log of GDP ($ US, in 2000)’)
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See how the distribution changed from right skewed to almost symmetric. Also lets compare
scatterplot of ‘LifeExp’ versus original ‘GDP’ and versus transformed variable:

par(mfrow=c(1,2))

plot(GDP,LifeExp,xlab=’GDP ($US, in 2000)’,ylab=’Life expectancy (years)’)

plot(GDP.log,LifeExp,xlab=’Base 10 log of GDP ($US, in 2000)’,

ylab=’Life expectancy (years)’)
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Now the second plot seems much more linear than the original one. Hence we can make a linear
regression of the ‘Life expectancy’ versus the transformed GDP:

lin.reg.lifeexp.log=lm(LifeExp~GDP.log)

par(mfrow=c(1,1))

plot(GDP.log,LifeExp,xlab=’Base 10 log of GDP ($US, in 2000)’,

ylab=’Life expectancy (years)’)

abline(lin.reg.lifeexp.log,col=’orange’)
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To get regression line coefficients and to test their significance, we use ‘summary’ function as
before:
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summary(lin.reg.lifeexp.log)

Call:

lm(formula = LifeExp ~ GDP.log)

Residuals:

Min 1Q Median 3Q Max

-23.723 -2.395 0.779 3.641 11.085

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.2618 3.4306 3.574 0.000477 ***

GDP.log 14.9310 0.8948 16.687 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.989 on 145 degrees of freedom

(50 observations deleted due to missingness)

Multiple R-squared: 0.6576, Adjusted R-squared: 0.6552

F-statistic: 278.5 on 1 and 145 DF, p-value: < 2.2e-16

To finish this section we return to the ‘Coffee Shop’ data set. We have already created
‘lin.reg.coffee’ object, which is regression of ‘carbohydrates’ on ‘calories’. So lets plot again the
scatterplot with the regression line and residuals versus predictor:

par(mfrow=c(1,2))

plot(calories,carb,xlab=’Calories’,ylab=’Carbohydrates (g)’)

abline(lin.reg.coffee,col=’blue’)

plot(calories,lin.reg.coffee$residuals,xlab=’Calories’,ylab=’Residuals’)

abline(h=0,lty=3)
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Since the variance is not constant we try to make base 10 logarithm transformation of the
response. We construct a new transformed variable and make regression of the modified variable
versus ‘calories’:

carb.log=log10(carb)

lin.reg.coffee.log=lm(carb.log~calories)

Then we plot the regression line and residuals:

par(mfrow=c(1,2))

plot(calories,carb.log,xlab=’Calories’,ylab=

’Log (base 10) of Carbohydrates’)

abline(lin.reg.coffee.log,col=’orange’)

plot(calories,lin.reg.coffee.log$residuals,xlab=

’Calories’,ylab=’Residuals’)

abline(h=0,lty=3)
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Now the variance is constant and using linear regression is appropriate (there are two large
negative residuals which we will discuss later). Lets check the condition that residuals follow a
normal distribution using quantile-quantile plot

qqnorm(lin.reg.coffee.log$residuals)
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The plot looks straight and therefore we can conclude that normal assumption is satisfied.

To explain two unusual observations from the residual plot, let’s make a scatterplot of ‘carb.log’
versus ‘calories’ but with different symbols and colors corresponding to the ‘type’ of the food. Since
‘type’ variable contains names of different foods, it is convenient to make them as factors:

type=as.factor(type)

Next we make a scatterplot of ‘carb.log’ versus ‘calories’ and residual plot

par(mfrow=c(1,2))

plot(calories,carb.log,xlab=’Calories’,ylab=’Log (base 10) of Carbohydrates’,

pch=c(1,2,3,4,5,6,7)[as.numeric(type)], col=c("blue","red","green",

"maroon","purple","black","yellow")[as.numeric(type)])

abline(lin.reg.coffee.log,col=’orange’)

legend(x="topleft",c("Bakery", "Bistrobox", "Hotbreakfast",

"Parfait", "Petite", "Salad", "Sandwich"),pch=c(1,2,3,4,5,6,7),

col=c("blue","red","green","maroon","purple","black","yellow"),

cex=0.7,bty="n")

plot(calories,lin.reg.coffee.log$residuals,xlab=’Calories’,ylab=’Residuals’,

pch=c(1,2,3,4,5,6,7)[as.numeric(type)],col=c("blue","red","green",

"maroon","purple","black","yellow")[as.numeric(type)])

abline(h=0,lty=3)

legend(x="bottomleft",c("Bakery", "Bistrobox", "Hotbreakfast",

"Parfait", "Petite", "Salad", "Sandwich"),pch=c(1,2,3,4,5,6,7),

col=c("blue","red","green","maroon","purple","black","yellow"),

cex=0.7,bty="n")
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Here ‘pch’ and ‘col’ specify symbols and colors respectively. Since we have 7 different types,
‘as.numeric(type)’ can be 1, 2, 3, 4, 5, 6, 7 with 1 corresponding to ”Bakery”, 2 to ”Bistrobox” and
so on by alphabetical order. So for example if an observation has a ”Sandwich” type which
corresponds to 7 then this point would have ‘pch=7’ symbol with ‘yellow’ color. In the ‘legend’
function, ‘x’ and ‘cex’ specify position and size of a legend respectively, ‘bty=”n”’ means that we
do not need border for it.
We see that these two unusual observations correspond to ‘bistrobox’ items. Actually almost all
the ‘bistrobox’ food is below the fitted line, therefore it is important to use ‘type’ variable in the
analysis to explain relationship between ‘carbohydrates’ and ‘calories’.

Summary of R Functions

We give a short summary of all new R functions [and arguments] that we have learned in this
module:

Linear Regression

lm(Response~Predictor)

summary()

summary(Object)$fitted

summary(Object)$r.squared

summary(Object)$residuals

Plots

abline() [h,v,lty,col]

legend() [x,legend,pch,col,cex,bty]

par() [mfrow]

qqnorm()

title()

Miscellaneous

as.factor()

as.numeric()

log10()
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