Infroduction to Statistical Ideas and Methods

Linear Regression in SPSS

In this document we describe how to perform a simple linear regression in SPSS. We show how
to get coefficients of a regression line, test for significance of the slope, find R? statistic, make
transformations to variables and much more. We also show how to make plot of the data with
regression as well as plotting residuals.

For this document we need ‘Skeleton’; ‘Life Expectancy’, ‘Crawling’, ‘CFC11’ and ‘Coffee Shop’
data sets. It is assumed that you have managed to upload all these data into SPSS (please refer
to ‘Data sets import in SPSS’ document for detailed explanation).

Introduction

We start with the ‘Babies Crawling’ data set and we want to investigate the relationship between
the temperature and the average crawling age in weeks. Once you open the original data file you
will notice that the temperature is in Fahrenheit but we want to have it in Celsius, to make this
small transformation please refer to the ‘Data sets import in SPSS’ document. Hence we assume
that the temperature is in Celsius. Next let’s make a scatter plot of the ‘Average crawling age’
versus 'Temperature’, go to Graphs > Chart Builder
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Choose Scatter /Dot > double click on Simple Scatter
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Then drag ‘Temperature’ to the horizontal axis and ‘Average crawling age’ to the vertical axis:
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Click OK to get the following scatterplot:
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It seems that linear regression model can be appropriate in this case and we want to plot these
data with the regression line. It is very simple to do that in SPSS. Just double click on the last
plot to open ‘Chart Editor’ and then click on the symbol with two axis and diagonal line:
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Immediately the regression line appears with regression coefficients. In the ‘Properties’ window
select ‘Lines’ to change visual characteristics of the line:
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The regression coefficients are given in the plot, however there is another way to get them. We

will use this approach
Linear
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Move ‘Average crawling age’ to ‘Dependent’ section using arrow and similarly ‘Temperature’
to ‘Independent’ variables. Then click on ‘Statistics’, and select ‘Estimates’ and deselect other

options:
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Click Continue then OK and we get the following table:



#+ Regression

Variables EnteredRemoved”
Variables Variables
Madal Entered Removed Method
1 Temperalure
(degress Enter
Celsius) "

3. Dependant Variable: Averaga crawling age (weaks)
b. Al reguestad variables entzred.

Coefficients™
Standardzed
Unstandardized Cosficlents | Coafficiznts
Wodsl B Std. Errar Bala ] Sig.
1 (Constant) 33190 5496 55716 Jols 1]
Temparalure (degrees
Celsius) -140 045 -.700 -3.097 011

a. Dependent Variable: Average crawling age (weeks)

Under ‘Unstandardized coefficients’ we see that by (intercept) is 33.190 and by (slope) is —0.140.
Hence we produce exactly the same coefficients as on the plot.

Some caution

We start this section with the ‘CFC’ data set.
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The goal is to investigate the relationship between ‘time’ and ‘cfc11’. These data contain infor-
mation till 2005 but we first want to analyse relationship before 1990, which are observations from
1 to 156. To do that we copy ‘time’ and ‘cfc11’ variables to new columns and call them ‘time.1990’
and ‘cfc.1990’ and then manually delete all the observations below 156th positon.
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Now we create a scatterplot with linear regression line for these two variables (‘cfc11.1990’ is
the response while ‘time.1990’ is the predictor)
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It seems that linear regression fits quite well. Now lets plot all the data points (‘cfc1l’ versus

‘time’):
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We clearly see that the linear model is not appropriate here. A very important part in checking
whether a linear regression is appropriate or not is to plot residuals versus independent variable.
First got to Analyze > Regression > Linear, then move ‘cfc11.1990’ to dependent section and
‘time.1990’ to independent one, then click on ‘Save’ button and under ‘Residuals’ select "Unstan-
dardized’:
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Click Continue then OK, that procedure produces a new column of residuals:
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Then make a scatterplot of these residuals versus ‘time.1990’ as explained earlier, double click
on the plot to open ‘Chart Editor’ and click on the symbol with horizontal line to add reference
line to the plot:
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To finish click Apply and close the ‘Chart Editor’ to get the residual plot:
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This plot also shows that there is a problem with simple regression since we observe some
pattern in the residual plot.

Next we move back to the ‘Average crawling age’ data. In the last section we have already
created the next plot:
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Doing exactly the same procedure as explained above we produce residual plot for this regres-
sion model:
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Based on the above plot we observe one observation which has lowest residual and might be
an influential point. Hence we want to make the analysis again but without this observation. To
do that we just delete the fifth observation and then construct the scatterplot with regression line
and residual plot for the modified data set:
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Since the coefficients have not changed by much we cannot say that the removed observation
is influential.

The coefficient of determination

An important question in the regression analysis is to find how well a regression line fits the data.
One measure of the fit is the coefficient of determination or R?. Consider first the ‘Average crawl-
ing age’ data. We want to find R2, sum of squares total, sum of squares regression and sum of
squares residuals. It is very easy to find all these statistics in SPSS. As usual go to Analyze >
Regression > Linear, choose appropriate dependent and independent variables, then click on
the ‘Statistics’ button. In this window in addition to ‘Estimates’ also select ‘Model fit’:
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Click Continue > OK to get the next table:

Model Summary

Adjusted R S1d. Error af
Madsl R R Square Square the Estimate
1 700% 440 439 1.31620

a. Predictors: (Constanf, Temperature (degrees Celsius)

ANOVA®
Sum of
Madel Squares df Mean Sguare F Slg.
1 Regression 16603 1 16603 9.582 one
Residual 17.403 10 1.740
Tatal 34.096 ikl

a, Dependent Variable Average crawling age (weeks)

b. Predictors: (Constanty, Temperature (degraes Celsius)

Coefficients™
Standardizad
Unstandardized CoefMcients Coeflicients
Modzl B Std. Error Beta 1 Sig
1 (Constany 33.180 596 85.716 .oop
Temperalure (degrees
r . 145 - -3.097 (i
Celsius) 140 045 ] 309 .01

a. Dependent Variable: Average crawling age (weeks)

Now in addition to coefficients we have much more information. Under ‘Model summary’ we
see that R? is 0.49 also under ‘ANOVA’ we have all the sums of squares. Also in a simple linear
regression, R? should be the same as correlation squared. Let’s find the correlation between ‘Tem-
perature’ and ‘Average crawling age’: go to Analyze > Correlate > Bivariate:
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Move these two variables across using arrow, make sure that ‘Pearson’ correlation is selected:

& Average crawting ag... @
& Temperature (degre.. E
Correlation Coefiicients
W Pearzon [T Kendalls tau-b ] Spearman
[ Test of Significance
@ Two-tailed O One-tailed
Click OK
# Correlations
Correlations
Bvarage Temparalure
cranling age (degrees
(weeks) Celsius)
Average crawling age Paarson Camelation 1 -.700
fwagks) sig. (2-talled) L
N 12 12
Temperaturs (degress Pearson Cotrelzlion -700 1
Celsius) Sig, (2ailed) o
N 12 12

This table shows that correlation between two variables is —0.700. If you square this number
you get exactly the same R2.

To finish this section let us return to the ‘CFC11’ data set. We focus on the data before 1990.
Even though we know that linear regression is not appropriate for these data, lets get R? anyway.
We can get it using the above procedure but if we just make a scatterplot with regression line then
SPSS shows R? on the graph automatically:
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Hence 99.6% of variation is explained by this regression line.

Inference for the slope

In this section we show how to test that a particular estimate (of slope or intersection) is statisti-
cally significant or not. We start with ‘Skeleton’ data.
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Our response in this analysis would be ‘DGerror’ variable, and independent variable is ‘BMI-
quant’. Doing the standard procedures we obtain the scatterplot with the regression line:
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Hence the slope is 0.41, intercept is —23.29 and R? is 0.019. This means that less than 2% of
variation of the response is explained by this regression. But we have also a very important ques-
tion: is the slope statistically significant? Because if it is not, then ‘BMIquant’ is not important
for the prediction of ‘DGerror’. We can easily answer this question (and not only for the slope
but also for the intercept) if we go to Analyze > Regression > Linear. Move ‘DGerror’ to
dependent window and ‘BMIquant’ to independent one. Then click on ‘Statistics’ and make sure
that ‘Estimates’ are selected:
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Click Continue > OK to get the usual table:

Model Summary

Adjusted R Std. Error af
Model R R Square Square the Estimate
1 1367 013 016 14,011

a. Prodictors: (Constant), EMI (kg per metre squarad)

ANOVA®
Surm af
Model Squares df Mean Square F Sig.
1 Ragression 1483241 1 1483.241 7.556 006®
Residual TE1.758 398 186311
Total T8615.000 390

a. Dependent Variabla: Est. - Act age using D (years)
b. Predictors: (Constant), BMI (kg per metre squared)

Coefficients™
Standardized
Unstandardized Coefficients Coeflicients
Modal B Std. Emor Beta t Sig.
1 (Constant) -23.288 3397 -G BES oog
BMI (kg par matre .
squared) 06 148 136 2749 pili)

a. Dependant Wariable: EsL - Act age using D (years)

The p-values are displayed under ‘Sig.” title. Hence we note that the p-value for the slope is
0.006 which is quite small and therefore we conclude that ‘BMIquant’ variable is important for
prediction and we should not ignore it.

Now we return to the ‘Crawling’ data set. We want to check whether temperature really effects
the average crawling age or not. Doing similar procedure we get:
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Model Summary

Adjusted R Std. Error of
Model R R Square Square the Estimatz

1 700* 460 439 1.31820
a. Pradictors: (Constant), Tamparatura (dagreas Calsius)

ANOVA®
Sum of
Madel Squares dr Mean Square F Sig
1 Regrassion 16.693 1 16.683 4,582 ot
Regidual 17.403 m 1.740
Taotal 34.088 11

a. Dependent Variable: Average crawling age (weeks)
b, Predictors: (Constant), Temperature (degrees Celsius)

Coefficients™
Standardized
Unstandardized Coefficients Coeflicients
Modal B Std. Emor Bata t Sig.
1 {Constant) 331490 ] 55718 0oo
Temperature (degrees _ N
Calsiug) -140 045 -700 | -3.097 011

a Dependant Variable: Average crawling age (wesks)

Based on the output we conclude that the p-value for the slope is 0.011 which can be considered
as small and therefore temperature is statistically significant.

Checking for conditions

In this section we focus on the new data set ‘Coffee Shop’. The first 5 observations are shown below

Fle Edt View Data Transform Anahze Direr

SHE D « ~ &
calories carts type

1 350 67 bakery
2 350 64 bakery
3 420 58 bakery
4 430 75 bakery
5 130 17 bakery

In this example we want to fit a linear regression with ‘carb’ (carbohydrates) as the response
and ‘calories’ variable as the predictor. We get scatterplot with regression line in a usual way:
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Regression analysis is not complete without the residual plot, so we make residuals versus
‘calories’ scatterplot with horizontal dashed line: (remember that we get residuals from Analyze
> Regression > Linear then click on ‘Save’ and select ‘Unstandardized’ to produce column of
residuals)
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We immediately see a problem. The variance is not constant and increases as the ‘calories’
increase. Hence it is not appropriate to carry out inference on the slope of the regression line in
this case. Lets also make a quantile-quantile plot of the residuals: go to Analyze > Descriptive
Statistics > Q-Q Plots

snalge  DirectMarieting  Graphs  Uliies  Addons |

Reperts
Descripiive Statistics
Tables

Compare Heans

Genersl Linear Model
Generzlzed Linear Models
Mized Wodels

Corelate

Regression

Loginear

5] Frequencies

[ Desciptives

8, Explore.

[ Crosstabs.
TURF Analysis:

[ Raio

2 20 Piois..

Boaros.

Then move ‘Residuals’ variable across using arrow:
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Click OK and two plots appear in the output window but we need only the first one:

MNormal Q-Q Plot of Unstandardized Residual

Expected Normal Value
2

Observed Value

The points on this plot should lie on a straight line (and that would indicate that residuals
have normal distribution). In this example the plot is generally straight with some small departure
from linearly in the right tail.

Transformations

As shown in the last section, linear regression is not appropriate in some cases. In this section we
show how to transform predictor and/or response to make linear regression valid. Consider the
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‘Life Expectancy’ data set.
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Next we plot ‘LifeExp’ versus ‘GDP’ (using the usual Chart Builder):
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Clearly the relationship is not linear. However we see that ‘GDP’ variable has many small
values and several observations are very large. Hence base 10 log transformation may help in this
situation. First we want to construct a new variable ‘logl0_GDP’ that will store base 10 logs of
the original ‘GDP’ variable; go to Transform > Compute Variable

Transform  Anahze  DirectMarketing  Graphs
B compute Variable.

Programmability Transformation. .
CountValues within Cases

Shift Values...
Recode info Same Variables
Recode into Different Variables...
[ Automatic Recode.

Create Dummy Variables
[} visual Binning.
B optimal Binning.

Prepare Data for Modeling v
B4 Rank Cases
[ Date and Time Wizard..
[ Create Time Series
% Replace Missing Yalues...
@ Random Number Generators...

Then we call the target variable ‘logl0_GDP’ and enter ‘LG10(GDP)’ which means log base 10
of ‘GDP’ variable:
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Hlumeric Expression
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Click OK; and the new variable appears
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Now we make two histograms. The first one is histogram of the original variable ‘GDP’, second
one of the ‘logl0_GDP’:
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See how the distribution changed from right skewed to almost symmetric. Next lets make a
scatterplot of ‘LifeExp’ versus ‘logl0_GDP’ with regression line:
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Now the plot is much more linear than the original one and linear regression model seems
appropriate in this case.

To finish this section we return to the ‘Coffee Shop’ data set. From the last section we remember
that the variance of residuals is not constant and linear regression (‘carb’ versus ’calories’) is not
appropriate in this case. To solve this problem we try to make base 10 logarithm transformation
of the response. We construct a new transformed variable ‘logl0_carb’

1) Compute Variable E
Targatvarianis Numenc Expression:
fog10_caro I T
& Calories [calories] *
EEEEEE .- |
=== COF & Noncential COF
. g i Conversion
= 0 oG Gurtent Date/Time
—_ Date Arhmetic
) E] | = Date Croation L
[=1(-]la Delete 4 Eonetons ang Specal vanasies
E[uphﬂni\thiese\ednhwnﬂi(mm
ok ][ paste | [ Reset |[cancel | Heip

Then we make a scatterplot of transformed variable versus ‘calories’ and residual plot:
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Now the variance is constant and using linear regression is appropriate (there are two large
negative residuals which we will discuss later). Lets check the condition that residuals follow a
normal distribution using quantile-quantile plot; as explained earlier go to Analyze > Descrip-
tive Statistics > Q-Q Plots and we get the next plot:

MNormal Q-Q Plot of Unstandardized Residual

anoco-]

Expected Normal Value

“ns 03 02 01 oo o1 02 03
Observed Value

The plot looks straight and therefore we can conclude that normal assumption is satisfied.

To explain two unusual observations from the residual plot, let’s make a scatterplot of ‘logl0_carb’
versus ‘calories’ but with different symbols and colors corresponding to the ‘Type’ of the food. Go
to Graphs > Chart Builder > Scatter/Dot > double click on Grouped Scatter next drag
‘calories’ to the x-axis, ‘logl0_crab’ to the y-axis and ‘type’ to ‘Set color’ section:
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Variables: Charl praview uses example data
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Click OK, the scatterplot is produced. Double click on the plot to open ‘Chart Editor’, to
change symbols and colors for each ‘T'ype’ double click on symbols in the legend and then select

‘Marker’ from the ‘Properties’ window. To add regression line for the plot, click on ‘Add Fit Line
at Total’ as usual:
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Similar plot we do for the residuals versus ‘calories’
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We see that these two unusual observations correspond to ‘bistrobox’ items. Actually almost
all the ‘bistrobox’ food is below the fitted line, therefore it is important to use ‘type’ variable in
the analysis to explain relationship between ‘carbohydrates’ and ‘calories’.
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