
Introduction to Statistical Ideas and Methods

Simple Linear Regression
Some Cautions

Statistical methods work well in some situations, but care must be taken to use them ap-
propriately. In this section, we’ll take a look of some examples of situations that illustrate
when taking that care will help ensure that sensible conclusions are made.

Example 1
Chlorofluorocarbons or CFCs are chemicals that were widely used in refrigerants and aerosol
cans. However they are also known to contribute to ozone depletion in the under atmosphere.
Concentrations of CFC in the atmosphere have been measured in a variety of locations around
the globe since 1977, as can be seen in Figure 1. There is a strong linear pattern in the growth
of CFCs over time. Using the method of least squares, we can find the equation of a line to
describe that growth and we get:

ĈFC = −19064.03 + 9.71 × year

The slope is approximately 9.7, so on average, the concentration of CFCs is growing by 9.7
parts per trillion each year. The intercept is the estimated value of the concentration at
time 0. Of course in the year 0, CFCs hadn’t yet been invented, and the negative intercept
is meaningless. Interpreting the intercept in a practical way only makes sense when having
0 as the predictor variable is in the range of our data.
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Figure 1: Scatter plot of CFC concentration (parts per trillion) versus year (Example 1)
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We can also use regression lines to make predictions. Suppose we wanted to predict the CFC
concentration in 1995. Then

ĈFC = −19064.03 + 9.71 × 1995
.
= 309.4

However we might not be willing to trust this prediction because 1995 is 5 years outside the
range of our data. In fact, in 1987 the Montreal Protocol was developed, which laid out a
schedule for phasing out the manufacturing of CFCs. Figure 2 shows the CFC concentrations
extended beyond 1990. We can see the effect of the Montreal Protocol, as the atmospheric
concentrations of CFCs began to decrease. Making a prediction at 1995, which was beyond
the range of the data we used for our line, is called extrapolation. Extrapolation is always
dangerous. We may think a linear model is a reasonable way to describe what we see in the
data, but that doesn’t mean the pattern of a linear relationship exists outside the range of
the observed data.
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Figure 2: Scatter plot of CFC concentration (parts per trillion) versus year extended beyond
1990 (Example 1)

For the range of data in Figure 1, it seems that the straight line model fits well, but on a
closer look the data seem to follow a pattern of points above the line, and then below the
line, and then above the line. A systematic pattern like this is an indication that another,
more complicated model, might fit the data better than the straight line. But how can we
make sure we don’t miss a subtle pattern like this? Residual plots are useful tools as they
can exaggerate these kinds of patterns so we are less likely to miss them.

A residual is the vertical distance from a point to the regression line. Some of the residuals
are negative, corresponding to points that are below the line, and some are positive. In
the residual plot of the CFCs data in Figure 3 we can see the systematic pattern of mostly
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positive residuals then negative then positive, corresponding to points below, above, then
below, then above the line. If a line is an appropriate model for our data, the residual plot
should look like random scatter about 0.

Sometimes, instead of being plotted against the predictor variable, residuals are plotted
against the corresponding predicted values of the response variable. For regression with one
predictor variable, this has the effect of simply changing the scale on the horizontal axis,
and we interpret the plot in the same way. See Figure 3.
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Figure 3: Plots of residuals versus the explanatory variable and versus the predicted values
for Example 1

Example 2
Table 1 and Figure 4 show data and the corresponding scatterplots of 4 data sets, each
with 11 points. They aren’t real data, but were created by a the statistician Anscombe to
illustrate a point. For each of these data sets, summary statistics, including the means of x
and y, and their standard deviation and the correlation between x and y are the same. As
a result, the estimated regression line would be the same. However, a linear model is only
appropriate for the first set of data. The second would be better described by a curve. The
third looks like a nice linear relationship, but whose regression line is shifted by one stray
point. And the fourth would have no linear relationship, if it wasn’t for the single outlying
point. The statistician’s point in creating these data sets was to emphasize that the numbers
are not the whole story. Make sure you plot the data first to see if a linear model is a sensible
choice.

The third and the fourth scatterplots in Figure 4 include influential points. Both of these
examples have one point that, if we removed it from the data, the resulting regression line
would change by a substantial amount.
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x1 y1 x1 y2 x1 y3 x2 y4
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 8 5.56

12 10.84 12 9.13 12 8.15 8 7.91
7 4.82 7 7.26 7 6.42 8 6.89
5 5.68 5 4.74 5 5.73 19 12.50

mean 9.00 7.50 9.00 7.50 9.00 7.50 9.00 7.50
s.d. 3.32 2.03 3.32 2.03 3.32 2.03 3.32 2.03

correlation 0.82 0.82 0.82 0.82

Regression line for all 4 data sets: ŷ = 3.0 + 0.5x

Table 1: The 4 Anscombe datasets and their summary statistics (Example 2)

Influential point: A point is influential if the regression line changes substantially when
the point is removed from the data.
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Figure 4: Scatterplots and corresponding regression lines of the 4 Anscombe datasets (Ex-
ample 2)

Example 3
Figure 5 shows the relationship between average crawling age of babies and temperature.
There is one point that is far away from the regression line. The magnitude of its corre-
sponding residual is much larger than the magnitudes of all of the other residuals. In the
distribution of residuals, it is an outlier. We can remove that point from the dataset, and
refit the regression line to the remaining points to see if the line changes by much. We see
that the slope is very similar and the intercept is shifted up a small amount. So this point
doesn’t fit the data well, but it’s not influential.
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Figure 5: Scatterplot, residual plot, and effect of point of large residual for babies crawling
data (Example 3)

Points that are influential are often outliers in the horizontal direction. Outliers in the
horizontal-direction are called leverage points. Figure 6 shows some examples of leverage
points. Sometimes a leverage point falls into the pattern of the rest of the points, and
thus it is not influential as the line would be the same with or without it. An example of
this is illustrated in the first sketch in Figure 6. Sometimes a leverage point can completely
determine whether or not there appears to be a linear relationship, as illustrated in the second
sketch in Figure 6. Without the leverage point, there does not appear to be a relationship
between x and y. But with the point up in the top right, we get a regression line that shows
a relationship. So this leverage point is influential. Influential points don’t often have large
residuals; they often are influential because they draw to point close to them. Be careful not
to read too much into a regression line if one point determines its value. We wouldn’t want
to conclude that there is a linear relationship between the variables, when it is only due to
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one single point.

Figure 6: Influential points

Leverage point: A point is a leverage point if it is an outlier in the horizontal direction.

While regression is commonly used, it can also be easily abused. Careful consideration of the
range of the data, whether a straight line is appropriate, and whether individual points might
will help in making sensible conclusions from linear models fit to data. In summary:

• The intercept may only have a practical interpretation if a value of 0 for the predictor
variable is within the range of the data.

• Don’t extrapolate beyond the range of the data. The linear relationship may not
continue.

• A plot of the residuals versus the predictor variable (or versus the predicted values of
the response variable) can show whether a straight line is a good model for the data.
When a straight line model is appropriate, the plot should look like random scatter.

• Start with a scatterplot.

• Watch for influential points.
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