III

Introduction to Statistical Ideas and Methods

Probability: Events

Statistical Independence and Multiplication Rules

We start with a definition.
Two events are independent if:

$$
P(\mathrm{~A} \mid \mathrm{B})=P(\mathrm{~A})
$$

The definition shows that event B does not have an effect on the probability of event A. Also, if events A and are independent then

$$
P(\mathrm{~B} \mid \mathrm{A})=P(\mathrm{~B})
$$

So, if two events are independent and using the definition for conditional probability we get:

$$
P(\mathrm{~A} \mid \mathrm{B})=P(\mathrm{~A})=\frac{P(\mathrm{~A} \text { and } \mathrm{B})}{P(\mathrm{~B})} \text { if } P(\mathrm{~B})>0
$$

Rearranging the equation above we see that A and B are independent if

$$
P(\mathrm{~A}) \times P(\mathrm{~B})=P(\mathrm{~A} \text { and } \mathrm{B})
$$

This is a convenient way to check whether two events are independent or not.

Example

Suppose $P(\mathrm{~A})=0.3, P(\mathrm{~B})=0.1$ and $P(\mathrm{~A}$ and B$)=0.01$. Are A and B independent?
To check this we first calculate the product of the probabilities of the two events:

$$
P(\mathrm{~A}) \times P(\mathrm{~B})=0.1 \times 0.3=0.03
$$

It does not equal to $P(\mathrm{~A}$ and B$)=0.01$.
Thus A and B are not independent.

