Introduction to Statistical Ideas and Methods

Probability: Events
 Conditional Probability and Tree Diagrams

In this document we show how to use a tree diagram to calculate conditional probabilities.

Example:

Suppose we are given the following (hypothetical) information:

- First born children have a 50\% chance of being female.
- If the first child is a girl then the probability that the second child is a girl is $\frac{1}{3}$.
- If the first child is a boy then the probability that the second child is a girl is 0.40.

In this situation, what is the probability that the first child is a female if the second child is a female?

One convenient way to solve this problem is by drawing a tree diagram.
Since we know that first born children have a 50% chance of being female we draw two branches corresponding to females and males and add probabilities for these events (0.5 and $0.5)$.

Figure 1: First part of the tree diagram

Next we are given that if the first child is a girl then the probability that the second child is a girl is $\frac{1}{3}$. This is information about the 'female' branch of the tree, and so we add another two branches to 'first born female' corresponding to female and male and write probabilities ($1 / 3$ for girl given girl and $1-1 / 3=2 / 3$ for boy given girl). The last piece of information is that if the first child is a boy then the probability that the second child is a girl is 0.40. Here we add two branches to 'first born male' and add probabilities (0.40 for girl given boy and $1-0.40=0.60$ for boy given boy).

Figure 2: Completed tree diagram

The goal is to calculate:

$$
P(\text { first female } \mid \text { second female })=?
$$

Using the definition for conditional probability we get:

$$
P(\text { first female } \mid \text { second female })=\frac{P(\text { first female and second female })}{P(\text { second female })}
$$

We can use the tree diagram to find the numerator and the denominator. To get P (first female and second female) we just multiply probabilities of 'first born female' and 'second female given first female ${ }^{1}$ which is $\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$. Similarly P (first female and second male) $=$ $\frac{1}{2} \times \frac{2}{3}=\frac{2}{6}$.

Figure 3: Tree diagram with 'and' probabilities

So far we have found that:
$P($ first female and second female $)=\frac{1}{6}$
To get $P($ second female $)$ note that $P($ second female $)=P($ first female and second female $)+$ $P($ first male and second female $)=\frac{1}{6}+\frac{1}{5}=\frac{11}{30} \|^{2}$ Now we get the answer
$P($ first female \mid second female $)=\frac{\frac{1}{6}}{\frac{11}{30}}=\frac{30}{66} \approx 0.45$

[^0]
[^0]: ${ }^{1}$ This is an application of the multiplication rule: $P(\mathrm{~B}$ and A$)=P(\mathrm{~A} \mid \mathrm{B}) \times P(\mathrm{~B})$
 ${ }^{2}$ This is an application of the addition rule for disjoint events.

