## Introduction to Statistical Ideas and Methods

## Probability: Events

Bayes' Rule

Example:
Suppose we are given the following (hypothetical) information:

- First born children have a $50 \%$ chance of being female.
- If the first child is a girl then the probability that the second child is a girl is $\frac{1}{3}$.
- If the first child is a boy then the probability that the second child is a girl is 0.40 .

In this situation, what is the probability that the first child is a female if the second child is a female?

We already know the answer using a tree diagram, now we will implement Bayes' Rule to get the solution. Bayes' Rule is given by the following formula:

$$
P(\mathrm{~A} \mid \mathrm{B})=\frac{P(\mathrm{~A}) P(\mathrm{~B} \mid \mathrm{A})}{P(\mathrm{~A}) P(\mathrm{~B} \mid \mathrm{A})+P\left(\mathrm{~A}^{c}\right) P\left(\mathrm{~B} \mid \mathrm{A}^{c}\right)}
$$

where $A^{c}$ is a complement of event $A$.
First we define events A and B :

$$
\begin{aligned}
& A=\{\text { first child is female }\} \\
& B=\{\text { second child is female }\}
\end{aligned}
$$

The given information gives us what we need for the Bayes' Rule formula:

- $P(\mathrm{~A})=0.5$ because first born children have a $50 \%$ chance of being female.
- $P\left(\mathrm{~A}^{c}\right)=0.5$ since $P\left(\mathrm{~A}^{c}\right)=1-P(\mathrm{~A})=1-0.5=0.5$
- $P(\mathrm{~B} \mid \mathrm{A})=1 / 3$ which we know from the given information if the first child is a girl then the probability that the second child is a girl is $\frac{1}{3}$.
- $P\left(\mathrm{~B} \mid \mathrm{A}^{c}\right)=0.40$ because $\mathrm{A}^{c}$ is the 'first male' event and we know that if the first child is a boy then the probability that the second child is a girl is 0.40.

Now we just substitute these values into the Bayes' rule formula and get

$$
P(\mathrm{~A} \mid \mathrm{B})=\frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3}+\frac{1}{2} \times \frac{4}{10}}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{4}{20}} \approx 0.45
$$

The same result as with the tree diagram method.

