Introduction to Statistical Ideas and Methods

Probability: Random Variables in SPSS

In this document we show how to find probabilities of Binomial and Normal random variables in SPSS.

Binomial Random Variable

We start with this example: Suppose in one hospital 10 babies are born each day. The probability that a new born baby is a Boy is 50%. We are interested in the distribution of the number of boys born each day in this hospital.
Let
$Y=$ Number of Boys born on a day
We know that the distribution of Y is Binomial with $n=10$ and $p=0.50$

$$
Y \sim \operatorname{Bin}(10,0.5)
$$

Let's find 'Probability Mass Function' for this random variable. Open a new SPSS data file, go to Variable View section, and enter these two variables:

Then in the Data View section enter the values Y can take $(\operatorname{Bin}(10,0.5)$ can be $0,1,2 \ldots 10)$

To find probabilities we can use a 'calculator' in SPSS, go to Transform $>$ Compute Variable and enter the following expression:

'PDF.BINOM' calculates probabilities of binomial random variable. Click OK and we get probabilities:

Elie Edir	W Data	Iransforr
2 :		
	r	Prob
1	0	. 0010
2	1	. 0098
3	2	. 0439
4	3	. 1172
5	4	. 2051
6	5	2461
7	6	. 2051
8	7	. 1172
9	8	. 0439
10	9	. 0098
11	10	. 0010

From this result we can say that, for example the probability that 7 boys are born on a given day is 0.1172

$$
P(Y=7)=0.1172
$$

To plot the 'Probability Mass Function', go to Graph > Chart Builder select Scatter/Dot > double click on Simple Scatter. Drag 'Y' variable to X-Axis and 'Prob' to Y-Axis, click OK. The plot is produced, to modify it double click on it to open 'Chart Editor', double click on any point on the graph and 'Properties' window appears:

Here we can change color and shapes of the points, and then we click on 'Spikes' and select 'Floor' to produce vertical bars

If $Y \sim \operatorname{Bin}(10,0.3)$ (probability is different) we can find probabilities by changing 0.5 to 0.3 in Compute Variable' window:

The new probabilities are produced:

If we make plot of 'Prob' versus ' Y ' we get:

Observe that distribution is no longer symmetric but shifted to the left.
Suppose for the $Y \sim \operatorname{Bin}(10,0.3)$ we want to find probability of being less than or equal to 2 . Then we can just add probabilities from the above table:

$$
P(Y \leq 2)=P(Y=0)+P(Y=1)+P(Y=2)=0.0282+0.1211+0.2335=0.3828
$$

Instead of finding this probability by adding, we can go to Transform $>$ Compute Variable and enter the next expression:

The target variable we call 'Prob.below' and 'CDF.BINOM' calculates probability below values of 'Y'. Click OK and we get:

Now we immediately see that $P(Y \leq 2)=0.3828$ without adding probabilities by hand.

Normal Random Variable

Consider the next problem:

Suppose the birth weights of the infants born at a hospital follow a Normal distribution with mean of 3700 g and a standard deviation of 350 g .

We will work out the answers to these questions:

1. What percent of infants born at the hospital weigh less than 3000 grams?
2. What percent of infants weigh between 4000 and 4500 grams?
3. What birth weight is the first quartile?

Let X be a birth weight of a infant then we know:

$$
X \sim N(3700,350)
$$

Which means X has normal distribution with mean 3700 g and standard deviation 350 g .

1. What percent of infants born at the hospital weigh less than 3000 grams?

In this question we need to find $P(X<3000)$. To do that in SPSS open a new data file and in the Variable View section we construct two variables:

' X ' variable corresponds to the values our normal random variable can be and 'Prob.below' will be probabilities below ' X ' values. Now in the Data View section enter 3000 in ' X ' variable:

To calculate probability to the left of 3000 , go to Transform $>$ Compute Variable and enter the following expression:

Click OK and we get the result:

So we have the answer:

$$
P(X<3000)=0.0228
$$

2. What percent of infants weigh between 4000 and 4500 grams?

Here we need $P(4000 \leq X<4500)$. Observe that we can find this probability by calculating $P(X<4000)$ and $P(X<4500)$ since

$$
P(4000 \leq X<4500)=P(X<4500)-P(X<4000)
$$

We can find these two probabilities as in the first question. First enter 4000 and 4500 to the ' X ' variable:

Now as before in the calculator we enter the expression and get:

So we get the answer:

$$
P(4000 \leq X<4500)=P(X<4500)-P(X<4000)=0.9889-0.8043=0.1846
$$

3. What birth weight is the first quartile?

Here we have an opposite problem, we need x such that $P(X<x)=0.25$.
To find this value, enter 0.25 in 'Prob.below' variable:

As before go to calculator (Transform > Compute Variable), and type:

Note that instead of 'CDF.NORMAL' we use 'IDF.NORMAL' function. Click OK:

So we get

$$
P(X<3463.93)=0.25
$$

And hence the first quartile is about 3464 g .

