III

Introduction to Statistical Ideas and Methods

Probability: Random Variables

Variance of Discrete Random Variables
In this document we introduce a concept of variance for discrete random variables.
Consider a fair die example and let

$$
X=\text { face value of a die toss }
$$

Then for this random variable we have the following probability distribution:

Value of X	1	2	3	4	5	6
Prob	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Table 1: Probability Table for the fair dice

We already know that expected value $E(X)$ is 3.5 .
The variance of X is average deviation from the expected value and for this problem is equal to:

$$
\operatorname{Var}(X)=(1-3.5)^{2} \frac{1}{6}+(2-3.5)^{2} \frac{1}{6}+\cdots+(6-3.5)^{2} \frac{1}{6}=2.92
$$

Standard deviation is just square root of the variance:

$$
S D(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{2.92}=1.71
$$

The general formula for the variance of discrete random variable X that can take k values x_{1}, x_{2}, x_{k} with corresponding probabilities $P\left(X=x_{1}\right), P\left(X=x_{2}\right),, P\left(X=x_{k}\right)$ is

$$
\begin{aligned}
\operatorname{Var}(X) & =\left(x_{1}-E(X)\right)^{2} P\left(X=x_{1}\right)+\left(x_{2}-E(X)\right)^{2} P\left(X=x_{2}\right)+\cdots+\left(x_{k}-E(X)\right)^{2} P\left(X=x_{k}\right) \\
& =\sum_{i=1}^{i=k}\left(x_{i}-E(X)\right)^{2} P\left(X=x_{i}\right)
\end{aligned}
$$

In our die example $k=6, x_{1}=1, x_{2}=2,, x_{6}=6, E(X)=3.5$ and $P\left(X=x_{1}\right)=P(X=$ $\left.x_{2}\right)=\cdots=P\left(X=x_{6}\right)=\frac{1}{6}$.

