Introduction to Statistical Ideas and Methods

Probability: Random Variables
 Expectation and Variance Problems

In this document we solve two problems involving expectations and variances.
Example 1
The distribution of grades in a statistics course for the past 10 years ($A=5, B=4$, etc.) are shown in the table:

Grade	1	2	3	4	5
Probability	0.07	0.09	0.34	0.32	0.18

Table 1: Probability Table for the distribution of Grades

Calculate the average and standard deviation of the grade distribution. The graph of probability mass function for the grades looks like that:

Figure 1: Probability Mass Function of Grades

Using a standard formula for the expectation (we frequently represent expectation as Greek letter μ ('mu')) we get:

$$
E(\text { Grade })=\mu=1 \times 0.07+2 \times 0.09+3 \times 0.34+4 \times 0.32+5 \times 0.18=3.45
$$

The variance which is sometimes called σ^{2} ('sigma' squared) is

$$
\begin{aligned}
\operatorname{Var}(\text { Grade })=\sigma^{2} & =(1-3.45)^{2} \times 0.07+(2-3.45)^{2} \times 0.09+(3-3.45)^{2} \times 0.34+ \\
& +(4-3.45)^{2} \times 0.32+(5-3.45)^{2} \times 0.18=1.21
\end{aligned}
$$

Thus the standard deviation σ is

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{1.21}=1.10
$$

Example 2
The probability of payoffs in a lottery is shown in the next table:

Payoff	$\$ 0$	$\$ 5$	$\$ 10$	$\$ 20$
Probability	0.9	0.07	0.02	0.01

Table 2: Probability Table for the distribution of Payoffs

If the lottery sells 1000 tickets for $\$ 10$ each then what is the average amount that the lottery will profit?

The graph of probability mass function for the payoffs looks like that:

Figure 2: Probability Mass Function of Payoffs

First let's calculate the average payoff using expected value formula:

$$
\mu=0 \times 0.9+5 \times 0.07+10 \times 0.02+20 \times 0.01=0.75
$$

If the lottery sells 1000 tickets for $\$ 10$ each, then the lottery will bring in $\$ 10000$. The average payoff on 1000 tickets will be 1000 tickets $\times \$ 0.75$ per ticket $=\$ 750$. Therefore

$$
\text { Profit }=\$ 10000-\$ 750=\$ 9250
$$

To finish this document let's compare two expectations from previous examples. In the 'Grades' example the expectation was 3.45 which is between 3 and 4 . That makes sense because the probability of 1,2 and 3 is $50 \%(0.07+0.09+0.34)$ and another 50% is on 4 and 5 so the center should be between around 3 and 4 .
In the lottery example the expectation is only $\$ 0.75$ which in near 0 , since the probability of 0 is 90%. So almost all of the probability is at 0 and therefore the expectation should also be close to 0 .

