
Introduction to Statistical Ideas and Methods

Summarizing Data: One Variable
The Shape of the Data

In this lesson we will introduce histograms, which are another way to display quantitative
data. We will also learn some vocabulary that is used to describe the features of the data
that we might see in the histogram.

The pattern of values of data, showing their frequency of occurrence relative to each other,
is called the distribution of the data. A histogram is useful for visualising distribu-
tions.

Example 1
Let’s start with a histogram of the life expectancies for the 197 countries and territories in
our dataset.

Figure 1: Histogram of the life expectancy data

The first step in constructing a histogram is to divide the data values into intervals or bins
that are mutually exclusive. Since the life expectancies range from about 48 to 83 years
we’ve defined our bins to capture every decade from 40 to 90. There are five bins in the
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histogram and they are defined as:

> 40 and ≤ 50 years

> 50 and ≤ 60 years

> 60 and ≤ 70 years

> 70 and ≤ 80 years

> 80 and ≤ 90 years

The cutpoints are the values that define the beginning and the end of the bins. In this
case, the cutpoints are 40, 50, 60, 70, 80, and 90. The vertical axis in our histogram is the
frequency or count of the number of data values in each bin. For example, from our first
bin, we know that there are nine countries or territories with life expectancies greater than
40 years and at most 50 years.

The width and number of bins in a histogram can be any convenient value. However, it is
possible to dramatically change the appearance of a histogram with the choice of bin size,
particularly when the number of data values is small. As an example, if we change the bins
to cover only a two-year span, the life expectancy histogram appears to be more noisy, with
more variation in the frequencies among bins.

Figure 2: Histogram of the life expectancy data - small bin size

The tails of a histogram are the bars on the far left and right where the extremes of the
data values are. In the histogram we see that the left tail of the life expectancy distribution
is longer.

Example 2
Below are a few examples of the range of shapes of distributions we see in histograms. From
a histogram, we can get lots of information about the data and we should check for features
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such as the presence or absence of a peak. If there is one peak, the data value where this
occurs is called the mode. A distribution can be unimodal (one peak), bimodal (two
peaks), or multimodal (multiple peaks). If all data values occur about an equal number of
times, the distribution does not have a mode and is said to be uniform.

Figure 3: Various histogram shapes - unimodal, bimodal, uniform, right-skewed

From a histogram, we can also get an idea of the extent of spread in the data.

Figure 4: Histograms display the spread of the data

We can also see the extent of symmetry in the distribution of the data. Distributions can
be symmetric or skewed. A left-skewed distribution has a long left tail. A right-skewed
distribution has a long right tail.
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Figure 5: Histograms display the shape of the data

Histograms allows us to notice gaps in the data and outliers which are data values that are
much larger or smaller than the rest of the data.

Figure 6: Histograms display the gaps in the data

Using the new terminology, we can now say that the distribution of the life expectancy data
in Figure 1 is unimodal (mode between 70-80), left-skewed and without outliers. Some of
these features can also be seen in the boxplot of life expectancies in Figure 7. Note that the
median is in the right half of the box, and the left whisker is longer than the right whisker.
This is typical of left-skewed distributions.

Figure 7: Boxplot of the data
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We can also see the features of the life expectancy data in the five-number summary:

Minimum 1st Quartile Median 3rd Quartile Maximum
47.8 64.7 73.2 76.7 83.4

Table 1: Five number summary for life expectancy data

The difference between the third quartile and the median (76.7− 73.2 = 3.5) is smaller than
the difference between the median and the first quartile (73.2 − 64.7 = 8.5). The difference
between the median and the maximum (83.4− 73.2 = 10.2) is also smaller than the distance
from the median to the minimum (73.2 - 47.8 = 25.4). Another feature typical of many
left-skewed distributions is that mean is less than the median (69.9 < 73.2). This happens
because the mean is pulled down by the values in the long left tail.

Example 3
Let’s look at the shape for another set of data, the differences between the estimated ages
using the Di Gangi method and the actual ages of death for our 400 skeletons. The histogram
is shown in Figure 8. The distribution of these data is unimodal (mode is between -20 and
-10), symmetric, and without outliers.

Figure 8: Histogram of estimated age − actual age for the skeleton data

Comparing the histogram with the modified boxplot in Figure 9, we see that the boxplot
is also quite symmetric with the median near the middle of the box, and the whiskers of
similar length. The data values indicated outside the fences are not outliers here, since they
are not separated from the rest of the data.
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Figure 9: Boxplot of estimated age − actual age for the skeleton data

This symmetry can also be seen in the five-number summary in Table 2. The distance from
the median to the first quartile (−13 − (−23) = 10) is similar to the distance between the
median and the third quartile (−5 − (−13) = 8). Also, the distance from the median to
lower fence (−3 − (−60) = 47) is similar to the distance between the median and the upper
fence (32 − (−13) = 45). In addition, the mean (−14.2) and median (−13) are quite close
to each other.

Minimum 1st Quartile Median 3rd Quartile Maximum
-60 -23 -13 -5 32

Table 2: Five number summary for skeleton data (Di Gangi estimated age - actual age)

Example 4
We can also look at the histogram for the 2012 salaries of the New York Red Bulls soccer
team in Figure 10. This distribution is unimodal (mode is less than $100,000), right-skewed
and includes 2 large outliers. The key feature of these data is the large gap between the
salaries of the two highest-earning players and the 23 other players on the team.
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Figure 10: Histogram of the 2012 salaries of the New York Red Bulls

If we remove the two players with the largest salaries we can examine the distribution of
salaries for the remaining 23 players (Figure 11).

Figure 11: Histogram of the 2012 salaries of the New York Red Bulls (2 outliers removed)

The boxplot with the outliers excluded (Figure 12) shows the skew in the data. The median
is slightly to the left of center of the box, and the right whisker is much longer than the left
whisker.
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Figure 12: Boxplot of the 2012 salaries of the New York Red Bulls (2 outliers removed)

We can also see right-skew in the five number summary in Table 3. The distance from the
median to the first quartile (103500 − 44000 = 59500) is less than the distance between
the median and the third quartile (187500 − 103500 = 84000). Also, the distance from the
median to lower fence (103500−33750 = 69750) is less than the distance between the median
and the upper fence (301999− 103500 = 198499). And the mean (119904) is larger than the
median (103500).

Minimum 1st Quartile Median 3rd Quartile Maximum
33750 44000 103500 187500 30199

Table 3: Five number summary for NY Red Bulls 2012 salaries (2 outliers removed)

Summary of the relative location of the mean, median and mode
in a unimodal distribution

For most distributions, if the distribution is

symmetric: the mean, median and mode are approximately the same,

left-skewed: mean < median < mode,

right-skewed: mode < median < mean.

As shown in Figure 13, for symmetric and skewed distributions we can see the overall features
of the shape of the data in the histogram or boxplot. For a bimodal distribution, the boxplot
fails to capture the two peaks and a histogram can be more informative.
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Figure 13: Comparison of histograms and boxplots for various shapes of data

Unimodal and symmetric distributions of data with histograms that have roughly a bell
shape are very common. For data with this shape, the standard deviation is an important
measure of spread or variability. The empirical rule tells us approximately how the fre-
quency of data values is related to the standard deviation.

Empirical Rule:
68% of data values are within [mean − SD, mean + SD]
95% of data values are within [mean − 2×SD, mean + 2×SD]
99.7% of data values are within [mean − 3×SD, mean + 3×SD]

Example 5
As an example of how well the empirical rule works, we can look at the skeleton data. As was
shown in Figure 8, the error in age estimation has a unimodal and symmetric distribution.
For these data, the mean (x̄) is −14.2 and the standard deviation (SD) is 14.1.

x̄− 1 × SD = −14.2 − 14.1 ∼ −28 x̄ + 1 × SD = −14.2 + 14.1 ∼ 0

273 of the 400 data values or 68.3% are within the range [−28, 0]

x̄− 2 × SD = −14.2 − 2 × 14.1 ∼ −42 x̄ + 2 × SD = −14.2 + 2 × 14.1 ∼ 14

380 of the 400 data values, or 95% are within the range [−42, 14]

x̄− 3 × SD = −14.2 − 3 × 14.1 ∼ −57 x̄ + 3 × SD = −14.2 + 3 × 14.1 ∼ 28

397 of the 400 data values, or 99.3% are within the range [−57, 28]
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We can see that the distribution of the skeleton data is very close to the 68, 95, 99.7% that
we expected from the empirical rule.

Example 6
Although the Empirical Rule was derived from properties of symmetric and unimodal dis-
tributions, it works surprisingly well in other situations. Let’s see how it works for the
left-skewed life expectancy data (Figure 1). The mean for these data is 69.9 and the stan-
dard deviation is 9.7. It can be shown that

128/197 = 65% of data values are within 1 standard deviation of the mean
186/197 = 94.4% of data values are within 2 standard deviations of the mean
197/197 = 100% of data values are within 3 standard deviations of the mean

This example demonstrates that even for skewed distributions, we are very close to the 68,
95, 99.7% of the empirical rule.
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